• Title/Summary/Keyword: 확률 신뢰성

Search Result 997, Processing Time 0.029 seconds

Seismic Safety Assessment of the Turbine-Generator Foundation using Probabilistic Structural Reliability Analysis (확률론적 구조신뢰성해석을 이용한 터빈발전기 기초의 지진 안전성 평가)

  • Joe, Yang-Hee;Kim, Jae-Suk;Han, Sung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.33-44
    • /
    • 2008
  • Most of the civil structure - bridges, offshore structures, plant, etc. - have been designed by the classical approaches which deal with all the design parameters as deterministic variables. However, some more advanced techniques are required to evaluate the inherent randomness and uncertainty of each design variable. In this research, a seismic safety assessment algorithm based on the structural reliability analysis has been formulated and computerized for more reasonable seismic design of turbine-generator foundations. The formulation takes the design parameters of the system and loading properties as random variables. Using the proposed method, various kinds of parametric studies have been performed and probabilistic characteristics of the resulted structural responses have been evaluated. Afterwards, the probabilistic safety of the system has been quantitatively evaluated and finally presented as the reliability indexes and failure probabilities. The proposed procedure is expected to be used as a fundamental tool to improve the existing design techniques of turbine-generator foundations.

Error Analysis of Equivalence Ratio using Bayesian Statistics (베이지안 확률기법을 이용한 당량비 오차분석에 관한 연구)

  • Ahn, Joongki;Park, Ik Soo;Lee, Ho-il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 2018
  • This paper analyzes the probability of failure for the equivalence ratio error. The control error of the equivalence ratio is affected by the aleatory and epistemic uncertainties. In general, reliability analysis techniques are easily incorporated to handle the aleatory uncertainty. However, the epistemic uncertainty requires a new approach, as it does not provide an uncertainty distribution. The Bayesian inference incorporates the reliability analysis results to handle both uncertainties. The result gives a distribution of failure probability, whose equivalence ratio does not meet the requirement. This technique can be useful in the analysis of most engineering systems, where the aleatory and epistemic uncertainties exist simultaneously.

Monte-Carlo Approach to Develop Probabilistic Reliability Assessment Program (확률 기반의 신뢰도평가 기법 개발: Monte-Carlo 접근법)

  • Kim, Tai-Hyun;Chung, Koo-Hyung;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.330-332
    • /
    • 2008
  • 본 논문에서는 전력계통의 신뢰도를 평가하는 새로운 패러다임인 확률론에 근거한 신뢰도 평가에 대하여 살펴보았다. 확률론 신뢰도 평가 기법의 적용을 통하여 기존 결정론 접근법에서 다루지 못하였던 전력계통에서 발생하는 여러 가지 불확실성을 고려한 신뢰도 평가가 가능 하였으며 확률 신뢰도 평가 기법 중 시뮬레이션 기반 Monte-Carlo 기법을 적용하여 발전 및 부하의 블확실성까지 고려한 통합적인 신뢰도 평가 틀을 개발하였다. 더하여 개발된 신뢰도 평가 틀을 시험 계통에 적용하여 검증을 수행하였다.

  • PDF

Probabilistic Study on Pressure Behavior in Concrete Vacuum Tube Structures (콘크리트 진공튜브의 압력 변화에 대한 확률적 평가)

  • Park, Joonam
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.186-192
    • /
    • 2014
  • In this paper, a reliability analysis is performed where the pressure change inside a concrete tube is probabilistically estimated considering the uncertainties inherent in the material and the system discontinuity. A set of uncertain quantities related to the equivalent system air permeability and the atmospheric pressure, are defined as random variables with specific distribution. The pressure change inside a concrete tube is then probabilistically described using both analytical and simulation approaches. The reliability analysis confirms that the geometric configuration of a concrete tube needs to be changed from the initial configuration obtained from the deterministic analysis.

Reliability Analysis Using Parametric and Nonparametric Input Modeling Methods (모수적·비모수적 입력모델링 기법을 이용한 신뢰성 해석)

  • Kang, Young-Jin;Hong, Jimin;Lim, O-Kaung;Noh, Yoojeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Reliability analysis(RA) and Reliability-based design optimization(RBDO) require statistical modeling of input random variables, which is parametrically or nonparametrically determined based on experimental data. For the parametric method, goodness-of-fit (GOF) test and model selection method are widely used, and a sequential statistical modeling method combining the merits of the two methods has been recently proposed. Kernel density estimation(KDE) is often used as a nonparametric method, and it well describes a distribution function when the number of data is small or a density function has multimodal distribution. Although accurate statistical models are needed to obtain accurate RA and RBDO results, accurate statistical modeling is difficult when the number of data is small. In this study, the accuracy of two statistical modeling methods, SSM and KDE, were compared according to the number of data. Through numerical examples, the RA results using the input models modeled by two methods were compared, and appropriate modeling method was proposed according to the number of data.

Probability of Failure of Armor Units on Rubble-mound Breakwater with Safety Factor (안전계수에 따른 경사제 피복재의 파괴확률)

  • 이철응;안성모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • A probability of failure of armor units on rubbJe-mound breakwater are evaluated by using the direct method for reliability analysis, which is represented as a function of safety factor that has been extensively used in practical design. The reliability function is fonnulated based on Hudson formula suggested for designing the stable size of armor units on rubble-mound breakwater. Several kinds of stability coefficient are applied separately to calculate the probability of failure with respect to the type of armor units, breaking/nonbreaking and the correlation coefficients between random variables. [n addition, the sensitivity analyses are carried out to investigate quantitatively into the effects of each random variable in the reliability function on the probability of failure.

  • PDF

Study of Reliability Index in Concrete Structures Considering Coefficient of Variation of Degradation Factors (열화인자별 변동계수 변화에 따른 콘크리트 구조물의 신뢰성 지수에 관한 연구)

  • Kim, Joo-Hyung;Jung, Sang-Hwa;Kim, Tae-Sang;Lee, Kwang-Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, a variety of researches has been carried out to estimate the reliability-based analysis and design method of concrete structures and is attracted by probabilistic-based durability analysis/method of concrete structures subjected to chloride containing environment using MCS (Monte Carlo Simulation). Probabilistic-based durability analysis/method was proposed by lots of researches, but there is the lack of data for degradation factors for the calculation of probability distribution. The reliability based durability analysis method represents that the service life and reliability index varies with the probability distribution and coefficient of variation of each factor. Therefore, in this paper, the importance of experiment data for the degradation factors is confirmed and the study of reliability index in RC structures under chloride attack environments is performed considering the variation coefficient of degradation factors.

  • PDF

The Development of a Human Reliability Analysis System for Safety Assessment of a Nuclear Power Plants (원자력 발전소 안전성 평가를 위한 인간 신뢰도 분석 방법론 개발 및 지원 시스템 구축)

  • Kim, Seung-Hwn;Jung, Won-Dea
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.261-267
    • /
    • 2006
  • In order to perform a probabilistic safety assessment (PSA), it requires a large number of data for various fields. And the quality of a PSA results have become more important thing of the risk assessment. As part of enhancing the PSA qualify, Korea Atomic Energy Research Institute is developing a full power Human Reliability Analysis (HRA) calculator to manage human failure events (HFEs) and to calculate the diagnosis human error probabilities and execution human error probabilities. This paper introduces the development process and an overview of a standard HRA method for nuclear power plants. The study was carried out in three stages; 1) development of the procedures and rules for a standard HRA method. 2) design of a system structure, 3) development of the HRA calculator.

  • PDF

Design Sensitivity and Reliability Analysis of Plates (판구조물의 설계감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.125-133
    • /
    • 1991
  • For the purpose of efficiently calculating the design sensitivity and the reliability for the complicated structures in which the structural responses or limit state functions are given by implicit form, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis method needed in the reliability-based design is proposed. As numerical examples, two thin plates are analyzed for the cases of plane stress and plate bending. The initial yielding is defined as failure criterion, and applied loads, yield stress, plate thickness, Young's modulus and Poisson's ratio are treated as random variables. It is found that the response variances and the failure probabilities calculated by the proposed PFEM-based reliability method show good agreement with those by Monte Carlo simulation. The probabilistic design sensitivity evaluates explicitly the contribution of each random variable to probability of failure. Further, the design change can be evaluated without any difficulty, and their effect on reliability can be estimated quickly with high accuracy.

  • PDF

다단 기어장치의 신뢰성 평가에 관한 연구

  • 정태형;김용주;이정상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.63-63
    • /
    • 2004
  • 구동 및 동력 전달용으로 많이 쓰이는 기어장치는 최근 고속도비에서 사용이 증가함에 따라 다단기어장치의 설계에 대한 관심이 높아지고 있다. 하지만 다단 기어장치의 설계는 장치의 파손확률을 고려하지 않고 정적인 하중과 균일한 강도를 유지하는 차원에서 접촉해석과 강도설계 등이 주류를 이루었으며 대부분 설계자의 경험과 감각에 의해 시행착오적이고 반복적인 방식으로 이루어지고 있다. 또한 임의의 시간에서 다단 기어장치가 설계자의 의도대로 작동할 확률인 신뢰성에 대한 연구가 미흡하였다.(중략)

  • PDF