• Title/Summary/Keyword: 확률적 허프 변환

Search Result 8, Processing Time 0.016 seconds

A Selection of Threshold for the Generalized Hough Transform: A Probabilistic Approach (일반화된 허프변환의 임계값 선택을 위한 확률적 접근방식)

  • Chang, Ji Y.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.161-171
    • /
    • 2014
  • When the Hough transform is applied to identify an instance of a given model, the output is typically a histogram of votes cast by a set of image features into a parameter space. The next step is to threshold the histogram of counts to hypothesize a given match. The question is "What is a reasonable choice of the threshold?" In a standard implementation of the Hough transform, the threshold is selected heuristically, e.g., some fraction of the highest cell count. Setting the threshold too low can give rise to a false alarm of a given shape(Type I error). On the other hand, setting the threshold too high can result in mis-detection of a given shape(Type II error). In this paper, we derive two conditional probability functions of cell counts in the accumulator array of the generalized Hough transform(GHough), that can be used to select a scientific threshold at the peak detection stage of the Ghough.

Implementation of the System Converting Image into Music Signals based on Intentional Synesthesia (의도적인 공감각 기반 영상-음악 변환 시스템 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.254-259
    • /
    • 2020
  • This paper is the implementation of the conversion system from image to music based on intentional synesthesia. The input image based on color, texture, and shape was converted into melodies, harmonies and rhythms of music, respectively. Depending on the histogram of colors, the melody can be selected and obtained probabilistically to form the melody. The texture in the image expressed harmony and minor key with 7 characteristics of GLCM, a statistical texture feature extraction method. Finally, the shape of the image was extracted from the edge image, and using Hough Transform, a frequency component analysis, the line components were detected to produce music by selecting the rhythm according to the distribution of angles.

Lane Extraction Using Grouped Block Snake Algorithm (그룹화 블록 스네이크 알고리즘을 이용한 차선추출)

  • 이응주
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.445-453
    • /
    • 2000
  • In this paper we propose the method which extracts lane using the grouped block snake algorithm. In the proposed algorithm, input image is divided into $8\times{8}$ blocks and then noise-included blocks are removed by a probability-based method. And also, we use hough transform to separate lane from the background image and suggest a grouped block snake method to detect road lane blocks. The proposed method reduces computational complexity and removes the noise in a more effective way compared to the pixel-based snake method.

  • PDF

Angle Invariant and Noise Robust Barcode Detection System (기울기와 노이즈에 강인한 바코드 검출 시스템)

  • Park, Dongjin;Jun, Kyungkoo
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.868-877
    • /
    • 2015
  • The barcode area extraction from images has been extensively studied, and existing methods exploit frequency characteristics or depend on the Hough transform (HT). However, the slantedness of the images and noise affects the performance of these approaches. Moreover, it is difficult to deal with the case where an image contains multiple barcodes. We therefore propose a barcode detection algorithm that is robust under such unfavorable conditions. The pre-processing step implements a probabilistic Hough transform to determine the areas that contain barcodes with a high probability, regardless of the slantedness, noise, and the number of instances. Then, a frequency component analysis extracts the barcodes. We successfully implemented the proposed system and performed a series of barcode extraction tests.

Driving Assist System using Semantic Segmentation based on Deep Learning (딥러닝 기반의 의미론적 영상 분할을 이용한 주행 보조 시스템)

  • Kim, Jung-Hwan;Lee, Tae-Min;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.147-153
    • /
    • 2020
  • Conventional lane detection algorithms have problems in that the detection rate is lowered in road environments having a large change in curvature and illumination. The probabilistic Hough transform method has low lane detection rate since it exploits edges and restrictive angles. On the other hand, the method using a sliding window can detect a curved lane as the lane is detected by dividing the image into windows. However, the detection rate of this method is affected by road slopes because it uses affine transformation. In order to detect lanes robustly and avoid obstacles, we propose driving assist system using semantic segmentation based on deep learning. The architecture for segmentation is SegNet based on VGG-16. The semantic image segmentation feature can be used to calculate safety space and predict collisions so that we control a vehicle using adaptive-MPC to avoid objects and keep lanes. Simulation results with CARLA show that the proposed algorithm detects lanes robustly and avoids unknown obstacles in front of vehicle.

An Efficient Method for Real-Time Broken Lane Tracking Using PHT and Least-Square Method (PHT와 최소자승법을 이용한 효율적인 실시간 점선차선 추적)

  • Xu, Sudan;Lee, Chang-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.619-623
    • /
    • 2008
  • A lane detection system is one of the major components of intelligent vehicle systems. Difficulties in lane detection mainly come from not only various weather conditions but also a variety of special environment. This paper describes a simple and stable method for the broken lane tracking in various environments. Probabilistic Hough Transform (PHT) and the Least-square method (LSM) are used to track and correct the lane orientation. For the efficiency of the proposed method, two regions of interest (ROIs) are placed in the lower part of each image, where lane marking areas usually appear with less intervention in our system view. By testing in both a set of static images and video sequences, the experiments showed that the proposed approach yielded robust and reliable results.

Iris Detection at a Distance by Non-volunteer Method (비강압적 방법에 의한 원거리에서의 홍채 탐지 기법)

  • Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.705-708
    • /
    • 2018
  • Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.

  • PDF

Detection of Illegal U-turn Vehicles by Optical Flow Analysis (옵티컬 플로우 분석을 통한 불법 유턴 차량 검지)

  • Song, Chang-Ho;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.948-956
    • /
    • 2014
  • Today, Intelligent Vehicle Detection System seeks to reduce the negative factors, such as accidents over to get the traffic information of existing system. This paper proposes detection algorithm for the illegal U-turn vehicles which can cause critical accident among violations of road traffic laws. We predicted that if calculated optical flow vectors were shown on the illegal U-turn path, they would be cause of the illegal U-turn vehicles. To reduce the high computational complexity, we use the algorithm of pyramid Lucas-Kanade. This algorithm only track the key-points likely corners. Because of the high computational complexity, we detect center lane first through the color information and progressive probabilistic hough transform and apply to the around of center lane. And then we select vectors on illegal U-turn path and calculate reliability to check whether vectors is cause of the illegal U-turn vehicles or not. Finally, In order to evaluate the algorithm, we calculate process time of the type of algorithm and prove that proposed algorithm is efficiently.