• Title/Summary/Keyword: 확률론적 안전성평가

Search Result 152, Processing Time 0.025 seconds

A Study on the Fire Safety Assessment of a Ship (선박의 화재안전도에 관한 연구)

  • Jung-Hoon Lee;Jae-Ohk Lee;Young-Soon Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.116-122
    • /
    • 2001
  • In this paper, to make a base of the fire safety assessment about ship's fire protection design and Classification Society rule, statistical informations and modeling techniques for the fire safety engineering are investigated and probabilistic safety assessment methods in the structural reliability engineering are introduced. FSEM(Fire Safety Evaluation Module) developed in this paper calculates the probability of fatality, which can be used as an index of fire safety. FSEM is used to calculate the probability of fatality of the evacuees in a small room installed according to the rules for fire-proof. Sensitivity analysis is executed to investigate FSEM's applicability to ship. From results, the necessity of new criterion for ship's fire safety design, the need to study the human behavior in the evacuation from fire, and the development of new fire progress model considering special situations in ships are acknowledged.

  • PDF

Integration of Space Syntax Theory and Logit Model for Walkability Evaluation in Urban Pedestrian Networks (도시 보행네트워크의 보행성 평가를 위한 공간구문론과 Logit 모형의 통합방안)

  • Kim, Jong Hyung;Lee, Mee Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.62-70
    • /
    • 2016
  • Ensuring walkability in a city where pedestrians and vehicles coexist is an issue of critical importance. The relative relationship between vehicle transit and walkability improvements complicates the evaluation of walkability, which thus necessitates the formation of a quantitative standard by which a methodological measurement of walkability can be achieved inside the pedestrian network. Therefore, a model is determined whereby quantitative indices such as, but not limited to, experiences of accessibility, mobility, and convenience within the network are estimated. This research proposes the integration of space syntax theory and the logit path choice model in the evaluation of walkability. Space syntax theory assesses adequacy of the constructed pedestrian network through calculation of the link integration value, while the logit model estimates its safety, mobility, and accessibility using probability. The advantage of the integrated model hence lies in its ability to sufficiently reflect such evaluation measures as the integration value, mobility convenience, accessibility potential, and safety experienced by the demand in a quantitative manner through probability computation. In this research, the Dial Algorithm is used to arrive at a solution to the logit model. This process requires that the physical distance of the pedestrian network and the perceptive distance of space syntax theory be made equivalent. In this, the research makes use of network expansion to reflect wait times. The evaluation index calculated through the integrated model is reviewed and using the results of this sample network, the applicability of the model is assessed.

Research Trends on External Event Identification and Screening Methods for Safety Assessment of Nuclear Power Plant (원자력발전소 안전성 평가를 위한 외부사건 식별 및 선별 방법 연구동향)

  • Kim, Dongchang;Kwag, Shinyoung;Kim, Jitae;Eem, Seunghyun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.252-260
    • /
    • 2022
  • Purpose: As the intensity and frequency of natural hazards are increasing due to climate change, external events that affecting nuclear power plants(NPPs) may increase. NPPs must be protected from external events such as natural hazards and human-induced hazards. External events that may occur in NPPs should be identified, and external events that may affect NPPs should be identified. This study introduces the methodology of identification and screening methods for external events by literature review. Method: The literature survey was conducted on the identification and screening methods of external events for probabilistic safety assessment of NPPs. In addition, the regulations on the identification and screening of external events were investigated. Result: In order to minimize the cost of external event impact analysis of nuclear power plants, research on identifying and screening external events is being conducted. In general, in the identification process, all events that can occur at the NPPs are identified. In the screening process, external events are selected based on qualitative and quantitative criteria in most studies. Conclusions: The process of identifying and screening external events affecting NPPs is becoming important. This paper, summarize on how to identify and screen external events for a probabilistic safety assessment of NPPs. It is judged that research on bounding analysis and conservative analysis methods performed in the quantitative screening process of external events is necessary.

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.

Development of Intelligent Database Program for PSI/ISI Data Management of Nuclear Power Plant (원자력발전소 PSI/ISI 데이터 관리를 위한 지능형 데이터 베이스 프로그램 개발)

  • Park, Un-Su;Park, Ik-Keun;Um, Byong-Guk;Park, Yun-Won;Kang, Suk-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.5
    • /
    • pp.389-397
    • /
    • 1998
  • For an effective and efficient management of large amounts of preservice/inservice inspection(PSI/ISI) data in nuclear power plants, an intellegent Windows 95-based data management program was developed. This program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis in the past are avoided. The program extracts, and the associated remedies. Furthermore, additional inspection data and comments can be easily added or deleted for subsequent PSI/ISI operation. Although the initial version of the program was applied to Kori nuclear power plant, this program can be equally applied to other nuclear power plant. And also this program can be used to offer the fundamental data for application of evaluation data related to fracture mechanics analysis(FMA), probabilistic reliability assessment(PRA) of PSI/ISI results, performance demonstration initiative(PDI) and risk-informed ISI based on probability of detection(POD) information of ultrasonic examination. Besides, the program can be further developed as a unique PSI/ISI data management expert system that can be apart of PSI/ISI data management expert system that can be a part of PSI/ISI Total Support System(TSS) for Korean nuclear power plants.

  • PDF

A comparison analysis on probable precipitation considering extreme rainfall in Seoul (서울시 폭우특성을 고려한 근미래 확률강우량 산정 및 비교평가)

  • Yoon, Sun Kwon;Choi, Hyeon Seok;Lee, Tae Sam;Jeong, Min Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.17-17
    • /
    • 2019
  • IPCC (Intergovernmental Panel on Climate Change) 기후변화 전망보고서에 따르면 RCP 4.5 시나리오 기준, 21세기 전 지구 평균기온은 $2.5^{\circ}C$ 상승(한반도 $+3.0^{\circ}C$)하며, 전 지구 평균강수량은 4.1% 증가(한반도 +16.0%)할 것이라 전망하고 있다(기상청, 2012). 최근 기후변화와 기상이변에 따른 도심지 폭우특성이 변화하고 있음을 많은 연구결과에서 말해주고 있으며, 그 발생 빈도와 강도가 점차 증가하고 있는 추세이다. 특히, 서울시의 경우 인구와 재산이 밀집해 있어 폭우 발생에 의한 시민의 인명과 재산 피해 우려가 크다. 따라서 본 연구에서는 서울시를 대상으로 근미래(~2050년) 기후변화 하에서의 재현기간에 따른 확률강우량 변화 특성을 분석하여 비교 평가한 후 설계 강우량 산정에 활용하고자 하였다. 관측자료 기반 강수량의 변동 특성 분석과 Non-stationary GEV방법을 이용한 비정상성 빈도해석을 수행하였으며, 근미래 폭우특성 변화분석을 위하여 CMIP5 (Coupled Model Intercomparison Project 5)에 참여한 GCMs(General Circulation Models)을 활용한 강우빈도해석을 수행하였다. Mann-Kendall Test와 Quantile Regression을 통한 서울지점 여름철 강수량(June to September)과 기준강수량 초과 강수(30, 50, 80, 100mm/hr), 연간 10th 최대 강수량(Annual Top 10th Precipitation) 등을 분석한 결과 최근 증가 경향이 뚜렷하게 나타났으며, 비정상성 빈도해석에 의한 확률강우량 분석의 가능성과 신뢰성을 확인하였다. 또한 19-GCMs을 통하여 모의된 일(Daily) 단위 강수량자료를 비모수통계적 상세화(Nonparametric Temporal Downscaling) 기법을 적용하여 시간(Hourly) 강우로 다운스케일링하였으며, 서울시 미래 확률강우량에 대한 IDF 곡선(Intensity-Duration-Frequency Curve)을 작성하여 비교?분석한 결과 지속시간 1시간 강우에 대하여 재현기간 30년, 100년 조건에서 확률강우량이 약 4%~11% 수준에서 증가하고 있음을 확인하였다. 본 연구의 결과는 도심지 수공구조물의 설계빈도 영향을 진단하고, 근미래 발생가능한 확률강우량 변화에 따른 시간당 목표 강우량설정의 방법론을 제시하였다는데 의의가 있으며, 서울시의 방재성능목표 설정과 침수취약지역 해소를 위한 기후변화에 따른 수공구조물 설계 시 활용이 가능할 것으로 기대된다.

  • PDF

Probability-Based Performance Prediction of the Nuclear Contaminated Bio-Logical Shield Concrete Walls (원전 방사화 콘크리트 차폐벽의 확률 기반 성능변화 예측)

  • Kwon, Ki-Hyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-A;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.316-322
    • /
    • 2019
  • A probabilistic approach considering uncertainties was employed to investigate the effects on the material characteristics and strength of nuclear bio-logical shield concrete walls, when exposed to long-term radiation during the entire service life. Time-dependent compressive and tensile strengths were estimated by conducting the neutron fluence analysis. For the contaminated concrete, individual compressive and tensile failure probabilities can be possibly evaluated by not only establishing limit-state function withthe predefined critical values but also performing Monte Carlo Simulation. Nuclear power plant types similar to the Kori Unit 1, which was shut off permanently in 2017 after the 40-year operation, were herein selected for an illustrative purpose. Consequently, the probability-based performance assessment and prediction of contaminated concrete walls were well demonstrated.

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

Development of Railway Tunnel Fire Risk Assessment Program and its Application (철도터널 화재 위험도 평가 프로그램의 개발 및 적용사례)

  • Yoon, Sungwook;Park, Jong-heoun
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • With the increase in construction of long railway tunnel, social interest in the railway tunnel fire risk has also increased. However, quantitative fire risk research on this topic is still lacking, especially in terms of consideration of uncertainty of each variables used in risk analysis. Hence, in this study, to improve the overall performance of fire risk analysis technique for railway tunnel, Monte-Carlo simulation method is added to the traditional probabilistic risk analysis based on event tree approach and its validity is investigated by applying it to the real railway tunnel project.

  • PDF

Reliability of Fatigue Life Predictions for Fixed Offshore Structures (고정식 해양구조물의 피로수명예측에 대한 신뢰성해석)

  • Jae-Ohk Lee;Hyun-Yup Lee;Yong-Suk Suh;Jang-Ho Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.74-82
    • /
    • 1998
  • To evaluate the reliability against fatigue failure of offshore structures, a fatigue reliability analysis model based on the probabilistic approach has been developed. In this model, the simplified method is adopted as a fatigue analysis method. The uncertainties included in the fatigue analysis are considered as random variables and their statistical properties are evaluated as quantitatively as possible using existing data. As an example, the developed fatigue reliability model is applied to the jacket. And then the relative significance of each uncertainty on the probability of fatigue failure is surveyed.

  • PDF