Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.141-144
/
2022
최근 인터넷을 통한 동영상 제공 서비스가 확대됨에 따라 높은 품질의 온라인 컨텐츠에 대한 수요가 급증하고 있다. 그런데 넓은 동적 범위를 표현할 수 있는 High Dynamic Range (HDR) 컨텐츠의 공급은 수요를 따라가지 못하고 있는 실정이다. 본 논문에서는 밝기가 다른 프레임들로 구성된 Low Dynamic Range (LDR) 동영상을 이용해 HDR 영상을 생성하는 방법을 제안한다. 우선, 프레임들 간에 움직임이 존재하기 때문에 정렬 과정을 통해 이웃 프레임들을 중심 프레임에 맞추어 정렬한다. 이때 내용 (content) 기반으로 정렬을 해 정확도를 높이고, 원래 크기의 입력을 그대로 이용하는 모듈을 함께 사용하여 세부 정보도 잘 살려준다. 그리고 나서 잘 정렬된 다중 프레임들을 합쳐서 하나의 HDR 프레임을 생성한다. 실험을 통해 기존 방법들에 비해 우수한 성능을 보임을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.12-12
/
2021
현행 하도현황조사는 조사망에 따라 조사대상 하천의 하천기본계획 등을 통해 조사지점을 선정하므로 전체 하천구간의 하도특성 파악에 어려움이 있고, 하천기본계획의 수립년도와 현황조사시 기간에 차이가 있을 경우, 하도특성의 경년적 변동성 파악이 어렵다. 최근 이러한 문제점을 극복하기 위하여 하천조사에 인공위성, 드론 등을 활용한 원격탐사방법이 증가하고 있으며, 유역 성과활용도 조사에서도 위성영상자료 활용의 확대요구가 있다. 본 연구는 중랑천을 대상으로 유럽우주국(ESA)의 Sentinel-1을 활용하여 하도현황조사의 기초가 되는 맞춤형 최적화 수체추출기법을 개발하였다. 이를 위하여 중랑천 지역에 대한 50여 장의 Sentinel-1 위성자료를 수집하였고, 하천 중심선에 대한 유클리드 거리를 가중치로 산정하여 K-mean 군집화를 진행하였다. 검증을 위하여 Sentinel-1과 24시간 이내 촬영된 PlanetLab사(社)의 PlanetScope 영상자료로 정확성을 평가하였다. 그 결과 최대 70%에 근접하는 정확도를 보였다. 본 방법은 현존하는 수체추출방법보다 간단하고 신속하게 수체를 추출할 수 있을 것으로 보인다. 추후 딥러닝을 통한 수체 식별을 추가 진행할 예정이며, 정확도를 높일 수 있을 것으로 기대한다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.3
/
pp.1330-1336
/
2012
The Image retrieval has been study different approaches which are text-based, contents-based, area-based method and sub-image finding. The sub-image retrieval is to find a query image in the target one. In this paper, we propose a novel sub-image retrieval algorithm by Dot-Matrix method to be used in the bioinformatics. Dot-Matrix is a method to evaluate similarity between two sequences and we redefine the problem for retrieval of sub-image to the finding similarity of two images. For the approach, the 2 dimensional array of image converts a the vector which has gray-scale value. The 2 converted images align by dot-matrix and the result shows candidate sub-images. We used 10 images as target and 5 queries: duplicated, small scaled, and large scaled images included x-axes and y-axes scaled one for experiment.
Proceedings of the Korea Contents Association Conference
/
2006.05a
/
pp.431-435
/
2006
Panoramic Image provides wider field of view than image from acquisition equipment such as a camera and provides realism and immersion to users compared with single image. Cubic panoramic image provides three dimensional access zooming and rotating in top, bottom, left and right directions. But we require commercial softwares to make a panoramic image and can see distorted images in top and bottom direction. This paper presents a method that constructs cubic panoramic virtual reality image using Apple QuickTimeVR's cubic data structure without any commercial software to make realistic image of top and bottom direction in cubic panoramic virtual reality space.
Proceedings of the Korean Society of Computer Information Conference
/
2013.07a
/
pp.23-26
/
2013
최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.
Journal of the Korea society of information convergence
/
v.1
no.1
/
pp.17-24
/
2008
Video camera play very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. Interpolation is usually used for the enlargement and recovery of the image in this case. However, it has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse. This paper uses FOP(Facial Definition Parameter) proposed by the MPEG-4 SNHC FBA group and introduces a new algorithm that uses face outline information of the original image based on the FOP, which makes it possible to recover better than the known methods until now.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.511-513
/
2000
PaP Smear 테스트는 자궁 경부암 진단에 가장 효율적인 방법으로 알려져 있다. 그러나 이 방법은 높은 위 음성률(false negative error, 15~50%)을 나타내고 있다. 이런 큰 오류율은 주로 다량의 세포 검사에 기인하여, 자동화 시스템의 개발이 절실히 요구되고 있다. 본 논문은 자궁 경부암의 특징인 군집을 이루는 암세포를 인식할 수 있는 시스템을 제안한다. 시스템은 두 부분으로 나누어진다. 첫 단계에서는 저 배율(100배)에서 간단한 영상처리와 최소 근접 트리(Minimum Spanning Tree)를 통해 군집을 이루는 세포를 찾는다. 두 번째 단계서는 고 배율(400배)로 확대하여 군집 세포들로부터 여러 가지 특징을 추출한 후 KNN(k-Neighbor) 방법을 통해 인식하는 단계이다. 50개의 영상 (640X 480, RGB True Color 25 개의 100배 영상 , 25개의 400배 영상)이 실험에 사용되었다. 한 영상을 처리하는데 약 3초 (2.984초) 소요되었으며, 이는 region growing(20초)나 split and merge(58초) 방법 보다 덜 소요되었다. 100배 영상에서 정상과 비정상의 두 그룹으로 나누었을 경우에는 96%의 높은 인식율을 나타내었으나 비정상을 다시 5개의 그룹으로 나누었을 때는 45%로 나타내었다. 이는 영역 추출(segmentation) 단계에서 오류와 트레이닝 데이터의 비정확성에 기인한다. 400배 영상에서는 각각 92%와 30%로 나타내었다. 이는 영역추출 단계에서 사용한 Watershed 방법의 오류로 기인한 것으로 본다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2006.06a
/
pp.49-52
/
2006
오늘날 컴퓨터의 발달과 인터넷의 확산으로 멀티미디어 컨텐츠의 보급이 급격히 확대되고 있으며, 이들 컨텐츠에는 원거리 화상회의, 감시시스템, 주문형 비디오(VOD), 주문형 뉴스(NOD), 디지털 편집 시스템 등 동영상이 포함되어 있다. 이처럼 동영상은 정보교환과 정보표현의 매개물로서 중요한 역할을 한다. 그러나 이와 같은 동영상은 노이즈나 전송과정 중 발생하는 문제 등으로 인해 항상 좋은 품질을 보장되지 않는다. 이런 훼손된 영상을 원영상으로 복원하거나 사용자가 제거 혹은 복원하고자 하는 영역을 지정 처리함으로서 다양한 정보를 획득할 수 있다. 일반적으로 pc에서 사용되어지는 대부분의 동영상은 $15fps{\sim}30fps$이다. 대부분의 동영상 편집 기술은 각각의 frame을 추출하여 수동적으로 처리하므로 비용과 시간이 많이 든다. 이런 단점을 해결하기 위해 여러 방법이 기존에 시도되고 있다. 제거 혹은 복원하고자 하는 영역을 전 frame에서 처리하기 위해 움직임 검출 및 추적기법이 사용되며, 제거 혹은 복원하기 위해 median filtering, image inpainting 처리 방법들이 있다. 본 연구에서는 사용자에 의해 미리 정의된 바운딩 박스내의 객체를 추적하여 객체의 중심값을 찾는 mean-shift algorithm을 이용하여 움직이는 객체를 추적하였고 image Inpainting algorithm을 이용하여 훼손된 영역을 복원하거나 제거하고자 하는 객체를 제거하였다.
To understand road state more quickly and accurately, KICT(Korea Institute of Construction Technology) executing a project that acquire high resolution color CCD images of the whole national highway every 10m, and offer images to the HMS(Highway Management System). At this time, national highway images of the Kyeonggki-Do, Kangwon-Do and Chungcheong-Do province were linked to the HMS and being offered to user. In this paper, from acquisition using highway photologging vehicle to database construction, the whole image-related data processes are described such as match images with their positions one to one or rearrange data acquired by road line to by management office.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.10-13
/
2020
최근 초고화질 영상, 가상현실 등 프리미엄 콘텐츠에 대한 요구가 커지면서 360° VR과 8K TV 등의 시장이 확대되고 있다. 360° VR 영상을 만드는 데에 스티칭 기술이 사용되고 있고, 8K 영상을 촬영할 수 있는 장비는 매우 제한적이기 때문에 스티칭 기술을 통해 콘텐츠를 확보하려는 노력이 이어지고 있다. 스티칭 기술은 여러 영상을 합성하여 기존 카메라의 좁은 시야각 문제를 해결하고 보다 넓은 시야각의 영상을 만드는 기술이다. 최근에는 해당 분야에 관한 연구가 진행됨에 따라 이미지를 넘어 동영상 스티칭에 대한 연구가 주로 진행되고 있다, 기존 동영상 스티칭 방식은 이미지 스티칭 방식을 프레임마다 반복하기 때문에 시간이 오래 걸린다는 단점이 있다. 컴퓨터 비전 분야에서는 딥러닝을 활용하여 객체가 존재할 것으로 예측되는 부분에 사각형 모양의 경계 상자(Bounding box)를 생성하는 객체 탐지(Object detection) 분야에 관한 많은 연구가 이루어져 왔고 이를 기반으로 객체의 경계선을 검출하여 해당 영역만을 구분하는 객체 분할(Instance segmentation)에 대한 연구 또한 진행 중이다. 본 논문에서는 앞서 말한 스티칭 속도 문제를 해결하기 위하여 빠른 속도로 객체 분할이 가능한 YOLACT를 이용하여 스티칭 속도를 개선하는 방안을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.