• Title/Summary/Keyword: 확관튜브

Search Result 13, Processing Time 0.017 seconds

A Study on the Characteristics of Aluminum Tube Hydroformed Products (알루미늄 튜브를 이용한 액압성형품 특성연구)

  • Yi, Hyae-Kyung;Lee, Gun-Yeop;Lee, Sung-Mun;Lee, Young-Seon;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1010-1015
    • /
    • 2008
  • In this study, the characteristics of aluminum tube hydroformed products at different extrusion type and heat treatment conditions were investigated. For the investigation, as-extruded, full annealed and T6-treated Al 6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, free bulge test was performed at room temperature to $300^{\circ}C$. Also mechanical properties of hydroformed products at various pre- and post-heat treatments were estimated by hexagonal prototype hydroforming test at $250^{\circ}C$. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube. As a results, hydroformability of full annealed tube is $5{\sim}8%$ higher than that of extruded and T6-treated tube. The tensile strength and elongation of T6-post heat treated indirect extrusion tube were more than 330MPa and 12%, respectively. However, T6 pre treated hydroformed product represents high strength, 330MPa and low elongation, 8%. Therefore, Hydroformability of Al6061 tube showed similar value for both extrusion types. However flow stress of direct tube showed $20{\sim}50MPa$ lower value than indirect tube.

Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method (유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구)

  • Hong, S.;Hyun, H.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.

Development of Profile Technique for Steam Generator Tubes in Nuclear Power Plants Using $8{\times}1$ Multi-Array Eddy Current Probe ($8{\times}1$ 다중코일 와전류탐촉자를 이용한 원전 증기발생기 전열관 단면형상검사 기법 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 2008
  • Various ECT techniques have been applied basically to assess the integrity of steam generator tithing in nuclear power plant. Among these techniques, the bobbin probe technique is applied generally to examine the volumetric flaws such as a crack-like defect and wear which is generally occurred on steam generator tubing, and additionally MRPC probe is used to examine closely tile top of tubesheet and bending regions due to the high possibility of cracking. Dent and bulge also may be formed on tube during installation process and operation of steam generator, but the dent and bulge indications greater than specific size criteria are recorded on examination report because these indications are not considered as flaw. These indications can be easily detected with bobbin probe and approximately sized with profile bobbin probe, but the size and shape can not be accurately verified. Accordingly, in this study, the $8{\times}1$ multi-array EC probe was designed to increase the measurement accuracy of the sectional profiling EC testing of tube. As a result, we would like to propose the application of $8{\times}1$ multi-array EC probe for the measurement of size and shape of profile change on steam generator tube in OPR-1000 nuclear power plant.