• Title/Summary/Keyword: 화후

Search Result 23, Processing Time 0.019 seconds

Evaluation of the dimensional change of 3D-printed complete denture after post-curing (후경화에 따른 3차원 프린팅 의치의 체적변화)

  • Suyeon, Lee;Younghun, Kwak;Eunchul, Park;Heejung, Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.233-241
    • /
    • 2022
  • Purpose: The purpose of this study was to assess the dimensional change of 3D-printed dentures after post-curing. Materials and Methods: The upper and lower dentures were designed in Exocad DentalCAD software and exported as STL files. The upper and lower dentures were printed from 10 STL files using a DLP-type dental 3D printer. The printed upper and lower dentures were cleaned, and a scan file was created using a model scanner before and after post-curing. The dimensional change was evaluated by superimposing the scanned denture files before and after post-curing and measuring the distance between measurement points on the denture. SPSS was used for statistics, and the level of significance was 5%. Results: The maxillary denture reduced in size during post-curing, with the most notable color change occurring in the posterior palatal region. The reduction in anteroposterior maxillary denture length (A-D, A-E, A-F), as well as the distance between the first molars on both sides (B-C), was statistically significant. After post-curing, the mandibular denture showed more noticeable color change in the posteriorly buccal and lingual region. The decrease of length on the posterior (A-M, A-D, A-E, A-L, A-H, A-I, H-I) and lingual (J-K, L-M) sides of the denture were statistically significant. Conclusion: There was significant dimensional change in both the length and width of the 3D-printed maxillary and mandibular dentures after post-curing in this experiment. Consequently, it is seemed necessary to develop post-curing techniques and materials that reduce such denture deformation.

Investigation on the Amount of Water Evaporation from Composting Facilities Operated in Swine Farms (양돈농가에서 퇴비화시설별 수분변화량 분석에 관한 연구)

  • Kwag, J.H.;Choi, D.Y.;Park, C.H.;Jeong, J.H.;Kim, J.H.;Yoo, Y.H.;Jeon, B.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2008
  • The results of the research on the amount of water evaporation from composting facilities operated in swine farms are below. The number of swine per a farm was 1433 head/farm for a Simple Composting Facility (SCF) and 3500 head/farm for a Escalator composting facility(ECF) system. The capacities of the SCF and the ECF were $0.33m^3/head$ and $0.25m^3/head$, respectively. The ECF had 24.2% less capacity than the SCF. The average water contents in the swine manure for the CP and the ECF of the surveyed farms were 86.8% and 85.7%, respectively, which revealed the ECF had 1.3% less average water content than the SCF. Daily water inputs into the SCF and the ECF were $4.1kg/m^3/day$ and $6.5kg/m^3/day$, respectively. The ECF had approximately 36.9% higher water input than the SCF. Fermentation temperatures during the composting period for the SCF and the ECF were up to $45^{\circ}C$ and $70^{\circ}C$, respectively. The decreases in water contents per each square meter for the SCF and the ECF were 3.7 kg and 5.2 kg, respectively. The ECF lost approximately 28.8% more water content than the ECF, which would be caused by the difference of fermentation temperature between two systems. Fertilizer components after composting were examined. Nitrogen contents of the SCF and the ECF were similar (0.84% and 0.86%, respectively) and ${P_2}{O_5}$ contents were 0.78% and 0.74%, respectively, showing the SCF had slightly higher content than the ECF. However, OM and OM/N did not show the difference between two systems. Hence, efforts to increase composting efficiency with considerations of the water content of swine manure, fermentation temperature, and water evaporation potential should be done when the SCF and the ECF were used in swine farms.

  • PDF

Gonad Ontogeny in Relation to Somatic Growth in the Brown Croaker Miichthys miiuy (Basilewsky) (민어, Miichtys miiuy (Basilewsky)의 성장과 연관된 생식소 발달)

  • Park, In-Seok;Seol, Dong-Won;Im, Soo-Yeon;Park, Min Ouk;Hur, Woo June;Cho, Sung Woan;Song, Young-Chae;Kim, Jea-Soo;Jo, Hyo-Jae;Noh, Choong Hwan;Choi, Hee Jung
    • Korean Journal of Ichthyology
    • /
    • v.19 no.2
    • /
    • pp.107-111
    • /
    • 2007
  • Sex differentiation of the brown croaker Miichthys miiuy (Basilewsky) is described from hatching to the 120th day post-hatching (dph) (water temperature $24^{\circ}C$). Primordial germ cells (PGCs) were observed on the 20th dph (10.4 mm total length (TL), 0.14 g body weight (BW), and began to protrude into the peritoneal cavity from the 40th dph (19.4 mm TL, 0.39 g BW). On the 65th dph (31.3 mm TL, 0.93 g BW, $1,560D^{\circ}$ (degree-days)), initial ovarian differentiation was identified by the PGCs with condensed chromatin, and their transformation into meiotic oocytes. By the 120th dph (4.60 mm TL, 1.38 g BW, $2,880D^{\circ}$), the oocytes were in the perinucleolus stage and had increased from 20 to $40{\mu}m$ in diameter. While ovaries gradually grew after sex was differentiated, testes continued to multiply from the 65th dph. On the 80th dph (37.9 mm TL, 1.39 g BW, $1,920D^{\circ}$), the beginning of testis lobule formation was indicated by the occurrence of spermatogonial cysts enveloped by somatic cells in some of the testes. On the 120th dph, the testis lobules of some of the fish contained all germ cell stages through to the spermatocytes. Therefore, the sex differentiation type of the brown croaker is identified as gonochoristic.