• Title/Summary/Keyword: 화학적 산소요구량

Search Result 169, Processing Time 0.027 seconds

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea (동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6008-6014
    • /
    • 2013
  • This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

Analysis of Changes in the Algal Ecosystem of Sihwa Lake and Design of Sihwa-Ecosystem-Index (SEI) Based on Gradient Descent (시화호 조류 생태계의 변화 분석 및 경사 하강법을 이용한 시화호 환경 지수 고안)

  • Kim, Dong-hun;Jang, Ha-gyung;Lee, Gwan-wu;Jung, Gyeong-rok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.143-145
    • /
    • 2021
  • The Sihwa River was first planned to be a fresh water lake, but it failed due to serious environment pollution. During times of destruction and regeneration, changes of ecosystem of Sihwa River was visible, especially the algal ecosystem. It's because many seasonal birds pass through the place. This paper analyzes the changes of algal ecosystem of Sihwa River based on eight ecosystem indices. Moreover, using gradient descent, COD is expressed has a function of three ecosystem indices selected from above which is newly defined as SEI, Sihwa Ecosystem Index. In conclusion, we can observe the current ecosystem more easily without its actual data, but only with informations of the ecosystem.

  • PDF

A Sensitivity Analysis of Cell Size on a Distributed Non-Point Source Pollution Model (분산형 비점오염원 모델에서 단위유역 크기의 민감도 분석)

  • Bae, In-Hee;Park, Jung-Eun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.952-957
    • /
    • 2005
  • A sensitivity analysis study was performed to examine the effects of cell size on a distributed non-point source pollution model. The model, AnnAGNPS, whiff is a modified version of USDA's AGNPS, was applied to Eung stream watershed, a tributary of Cheongmi stream located in the South Branch of Han River System. The model components and results, such as channel length, slope, land use, and delivery ratio, were analyzed according to the various cell sizes from 10 to 200 ha. As cell sire increases, channel length decreases due to short-circuiting of meandering creek. The decreased channel length has more significant effects on the model results than any other geomorphological change. When the effects of land use and soil distribution are excluded, sediment delivery loads increase due to shorter time to reach the outlet of the watershed in larger tell size. When those effects are included, however, sediment delivery loads decrease in larger fell size because the variety of land use types can not be inputted. The predominant land use in the applied watershed is forest with very low soil erosion such that the predicted sediment delivery might be much lower than real system. The cell size of 30 ha was determined to produce the most appropriate resolution. Surface runoff and non-point source loads of TN, TP and BOD were predicted and the results agree well with the field measurements. From this study, it was shown that the model results would be very dependent on variations of topography, land use, and soil distribution, as a function of cell size, and the optimum cell size is very important for successful application of distributed non-point source pollution model.

Trophic State Index (TSI) and Empirical Models, Based on Water Quality Parameters, in Korean Reservoirs (우리나라 대형 인공호에서 영양상태 평가 및 수질 변수를 이용한 경험적 모델 구축)

  • Park, Hee-Jung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.14-30
    • /
    • 2007
  • The purpose of this study was to evaluate trophic conditions of various Korean reservoirs using Trophic State Index (TSI) and predict the reservoir conditions by empirical models. The water quality dataset (2000, 2001) used here were obtained from the Ministry of Environment, Korea. The water quality, based on multi-parameters of dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), suspended solid (SS), Secchi depth (SD), chlorophyll-${\alpha}$ (CHL), and conductivity largely varied depending on the sampling watersheds and seasons. In general, trophic conditions declined along the longitudinal axis of headwater-to-the dam and the largest seasonal variations occurred during the summer monsoon of July-August. Major inputs of TP occurred during the monsoon (r=0.656, p=0.002) and this pattern was similar to solid dynamics of SS (r=0.678, p<0.001). Trophic parameters including CHL, TP, SD, and TN were employed to evaluate how the water systems varies with season. Trophic State Index (TSI, Carlson, 1977), based on TSI (CHL), TSI (TP), and TSI (SD), ranged from mesotrophic to eutrophic. However, the trophic state, based on TSI (TN), indicated eutrophic-hypereutrophic conditions in the entire reservoirs, regardless of the seasons, indicating a N-rich system. Overall, nutrient data showed that phosphorus was a primary factor regulating the trophic state. The relationships between CHL (eutrophication index) vs. trophic parameters (TN, TP, and SD) were analysed to develop empirical models which can predict the trophic status. Regression analyses of log-transformed seasonal CHL against TP showed that the value of $R^2$ was 0.31 (p=0.017) in the premonsoon but was 0.69 (p<0.001) during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, SD had reverse relation with TP, CHL during all season. TN had weak relations with CHL during all seasons. Overall, data suggest that TP seems to be a good predictor for algal biomass, estimated by CHL, as shown in the empirical models.

Estimation of Total Allowable Pollutant Loads Using Eco-hydrodynamic Modeling for Water Quality Management on the Southern Coast of Korea (생태계 모델에 의한 총허용 오염부하량 산정을 통한 연안해역의 수질관리)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.29-43
    • /
    • 2007
  • For effective management of water quality on the southern coast of korea, a three-dimensional eco-hydrodynamic model is used to predict water quality in summer and to estimate the reduction rate in pollutant loads that would be required to restore water quality. Under the current environmental conditions, in particular, pollutant loadings to the study area were very high, chemical oxygen demand (COD) exceeded seawater quality criteria to comply with current legislation, and water quality was in a eutrophic condition. Therefore, we estimated reduction rates of current pollutant loads by modeling. The model reproduced reasonably the flow field and water quality of the study area. If the terrestrial COD, inorganic nitrogen and phosphorus loads were reduced by 90%, the water quality criteria of Region A were still not satisfied. However, when the nutrient loads from polluted sediment and land were each reduced by 70% simultaneously, COD and $Chl-{\alpha}$ were restored. When we reduced the input COD and nutrient loads from the Nakdong River by 80%, $Chl-{\alpha}$ and COD of Region B decreased below $10\;{\mu}g\;1^{-1}$ and $2\;mg\;1^{-1}$, respectively. The water quality criteria of Region C were satisfied when we reduced the terrestrial COD and nutrient loads by 70%. Total allowable loadings of COD and inorganic nutrients in each region were determined by multiplying the reduction rates by current pollutant loads. Estimated high reduction rates, although difficult to achieve at the present time under the prevailing environmental conditions, suggest that water pollution is very severe in this study area, and pollutant loads must be reduced within total allowable loads by continuous and long-term management. To achieve the reduction in pollutant loads, sustainable countermeasures are necessary, including the expansion of sewage and wastewater facilities, polluted sediment control and limited land use.

  • PDF

Effect of Oxidant Concentration and Reflux Time on COD Value by Alkaline Permanganate Method (알칼리성 화학적 산소 요구량 시험법에서 산화제 농도와 가열 시간의 영향)

  • Czae, Myung-Zoon;Kim, Mi-Kyung
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.281-284
    • /
    • 1995
  • The effect of permanganate concentration and refluxing time on the test COD results were investigated, as a validation test of the revised procedure. The amended protocol involves the use of a more dilute(1/2.5) permanganate solution(0.010N) and a shorter(1/3) refluxing period(20 min). This revision resulted only 70% of the COD value determined by the old procedure with 8 somewhat improved precision(CV 4.6%${\rightarrow}$3.3%). The dominant factor that influences the decrease in the COD result is the oxidant concentration, being two thirds of the overall effect. The same results were obtained in the comparison test using seawater samples.

  • PDF

A Study on the On-line Measurement of Biochemical Oxygen Demand of livestock Wastewater (축산 폐수의 생물화학적 산소요구량 자동 측정 방법에 관한 연구)

  • Kim, Hyoung-Mo;Kim, Jin-Kyong;Shin, Kwan-Suk;Kim, Jun-Hyung;Jung, Jae-Chil;Kim, Tai-Jin
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2008
  • The Biochemical Oxygen Demand(BOD) is one of important parameters for the most widely used method of organic pollution in wastewater and wastewater treatment effluent. As the conventional BOD test needs 5-day long incubation period, it is thus incompatible with real time control of wastewater treatment plant. To resolve this problem, in the present study an on-line Dissolved Oxygen(DO) monitoring system was used to observe the transient change of dissolved oxygen concentration in livestock wastewater. The system was composed of BOD sensor, amplifier and computer. It was observed that the concentration of the microorganism in the livestock wastewater was relatively constant during the growth period of initial one hour, which allowed the assumption of the constant Oxygen Uptake Rate(OUR) within one hour of measurement. It was thus concluded that the present scheme provided a protocol for automatic measurement of BOD in livestock wastewater, which can be applicable to optimal control of livestock wastewater treatment plant.

Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients (유기물 및 영양염류로 오염된 해양퇴적물 정화를 위한 석회석, 모래, 제올라이트의 반응성 피복 소재로서 적용성 평가)

  • Kang, Ku;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.470-477
    • /
    • 2017
  • In this study, the applicability of calcite, sand, and zeolite for the remediation of sediments contaminated with organics and nutrients were investigated. Sediments and seawater for water tank experiments were sampled from Pyeongtaek harbor, and 1 cm or 3 cm of calcite, sand, and zeolite were capped on the sampled sediments. pH, electric conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored for 63 days. The sampled sediments were highly contaminated with organic matter and total nitrogen. DO in uncapped condition was exhausted within 10 days but DO in capping condition except 3 cm of zeolite capping was prolonged above 2 mg/L. Capping efficiency for interrupting COD release from sediments was in the following order: zeolite 1 cm > calcite 1 cm > calcite 3 cm > sand 3 cm ${\cong}$ zeolite 3 cm ${\cong}$ sand 1 cm. Zeolite was found to be effective for interrupting nitrogen release. T-P was not observed in both uncapped and capped sediment, i.e., all experimental conditions. It can be concluded that zeolite can be effectively used for the remediation of sediments highly contaminated with organic matter and nitrogen.

Start-up Operation of Recirculating Aquaculture System (순환여과식 양식 시스템의 개시 운전)

  • Seo Kuen Hack;Kim Byong Jin;Jo Jae Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • The behavior of the biological water treatment process on start-up operation was evaluated in the integrated recirculating aquaculture system consisting of a double drain type rearing tank ($2.5 m^3$), a sedimentation tank, a floating bead filter, a foam separator and a rotating biological contactor. A system was stocked with nile tilapia (Oreochromis niloticus) at an initial rearing density of $2\%$ for 2 weeks for acclimated rotating biological contactor. The total ammonia nitrogen (TAN) level increased to $13.6 g/m^3$ on day 4 after adding feed and was decreased to $0.3 g/m^3$ on day 7. The total suspended solid was completely removed during overall experimental period.

Density Dependent Growth and Survival Rates of Atrina pectinata in Duekryang Bay, Korea (득량만 키조개, Atrina pectinata의 양성밀도에 따른 성장과 생존율)

  • Kim, Dae-Hong;Yoon, Ho-Seop;An, Yun-Keun;Lee, Sa-Dong;Choi, Sang-Duk
    • The Korean Journal of Malacology
    • /
    • v.24 no.2
    • /
    • pp.137-142
    • /
    • 2008
  • Growth and survival rates dependent on the density of a pen sell, Atrina pectinata were measured from Duekryang bay in Korea. Annual water temperature and salinity of the study area were ranged from 14.5 to $28.0^{\circ}C$ and from 27.98 to 31.89 psu, respectively. The pH, DO, COD, DIN, Chl-a and SPM in the study area ranged from 7.78-8.35 mg/L, 7.07-7.90 mg/L, 1.20-1.70 mg/L, 2.88-6.02 mg/L, 0.20-0.79 mg/L and 10.8-21.4 mg/L. The IL, COD and AVS in sediments ranged from 4.0-4.6%, 7.28-10.76 mg/L and 0.03-0.05 mg/L respectively. The daily growth rate of shell height and total weight were 0.27%, 0.33%(5 indiv./$m^2$), 0.26, 0.29%(10 indiv./$m^2$) and 0.21, 0.20%(35 indiv./$m^2$). The survival rate also decreased along the density gradient; highest at the lowest density of 5 indiv./$m^2$ and lowest at the maximum density of 35 indiv./$m^2$.

  • PDF