• Title/Summary/Keyword: 화학적 산소요구량

Search Result 168, Processing Time 0.03 seconds

Deodorization of Swine Wastewater by Rhodospirillum rubrum N-1 (Rhodospirillum rubrum N-1을 이용한 양돈폐수의 악취제거)

  • Choi, Kyung-Min;Kim, Jong-Seung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • Rhodospirillum rubrum N-1 was inoculated to manipulated swine wastewater of 20,000 mg/L as Biochemical Oxygen Demand (BOD) to study the effect of aeration on swine wastewater deodorization. Biological and physico-chemical parameters were determined at 1 day interval for 9 days. Removals of BOD, volatile fatty acids (VFAs), and phosphate were 54.6%, 87.0%, and 54.5%, respectively. No significant changes were observed in the concentrations of total nitrogen, total phosphorus, nitrate, nitrite, hydrogen sulfide, and mercaptane.

  • PDF

An Investigation into the Release of Chemical Oxygen Demand in Organic Filter Media (유기성 여재로부터 화학적 산소요구량 물질의 방출에 관한 연구)

  • Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • To improve the nitrogen reduction capability of stormwater treatment systems subjected to intermittent saturation, organic materials are often added as filter media. However, these materials can be an additional source of organic carbon and increase the chemical oxygen demand (COD) in the outflow. In this study, different types of organic filter media were subjected to a batch leaching test to observe and quantify the release of COD. Results reveal that the initial pH of the tap water used for soaking which is 7.5-7.7 is conducive to the release of organics from the media to the leachate. The highest amount of COD released was observed in yard clippings and woodchip followed by compost and bark mulch. The leaching of organics also increased as the size of the media decreases due to higher surface area per volume. In addition, empirical regression analysis predicted that COD from these organic media will be exhausted from the material in 3-5 months to up to 26 months depending on the type of media. The results of this study can serve as a guide in estimating the potential release of COD in organic media in order to ensure their safe application in stormwater treatment facilities.

A Kinetic Studies of Pyrolysis and Combustion of Sewage Sludge (하수 슬러지의 열분해 및 연소 Kinetics 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.47-53
    • /
    • 2014
  • Effective treatment and energy conversion technologies are necessary due to the ban of the dumping of organic waste including the sewage sludge. In this study, the kinetics of pyrolysis and combustion were derived in a TGA and thermobalance reactor, which is essential for thermal conversion of sewage sludge to energy. Three steps are shown for the pyrolysis in TGA and the different pre-exponential factors and activation energies are derived depending on the temperature range. Three models of gassolid reaction were applied to the reaction kinetics analysis for the combustion of sewage sludge char and shrinking core model was an appropriated model. Apparent activation energy and pre-exponential factor were evaluated and the effect of oxygen partial pressure was examined.

Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake (시화호 유입하천의 수질오염물질 농도에 관한 연구)

  • Jang, Jeong-Ik;Han, Ihn-Sup;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.289-299
    • /
    • 2011
  • We studied the characteristics of pollutant concentrations in 9 streams that flow into Shihwa Lake in order to provide the scientific data for effective implementation of total pollution loads management system (TPLMS) of the Lake. Suspended solid (SS), chemical oxygen demand (COD), dissolved nutrients ($NO_2$, $NO_3$, $NH_4$, $PO_4$ and $SiO_2$), total phosphorus (TP) and total nitrogen (TN) in stream water from industrial complexes, urban and agricultural regions were determined. Pollutant concentrations in December were higher than that in other sampling periods. COD concentration from industrial complex region with average of 12.6 mg/L was 2 times higher those from urban region (6.6 mg/L) and agricultural region (5.9 mg/L). TP concentration from industrial region also showed higher concentration than other regions. TN concentration in stream water was 5.89 mg/L for industrial region, 3.02 mg/L for urban region and 5.27 mg/L for agricultural region, respectively, suggesting inflow of TN due to fertilizer usage in agricultural field. Relative percentage of nitrogen compounds in TN follows the sequence: $NH_4$ (35.1%) > $NO_2$ (20.0%) > DON (22.8%) > PON (8.9%) > $NO_2$ (3.2%). Concentrations of dissolved nutrients, TP and TN in stream water were 3.2~37.2 times higher than that in Shihwa Lake seawater, therefore large amount of pollutants may be directly entered into Shihwa Lake without any treatment. For Gunja stream of industrial region, pollutants at midstream showed relatively higher concentration compared to upstream and downstream. It is necessary to manage the illegal discharging of sewage and waste water. Our results provide valuable informations on the estimation and reduction of total pollutant loads in the process of establishing adequately strategic and implemental plan of Shihwa Lake TPLMS.

Stream Ecosystem Assessments, based on a Biological Multimetric Parameter Model and Water Chemistry Analysis (생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천생태계 평가)

  • Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.198-208
    • /
    • 2006
  • This research was to apply a multi-metric approach, so called the Index of Biological Integrity (IBI) as a tool for biological evaluations of water environments, to a wadable stream. For the study, we surveyed 5 sampling locations in Kap Stream during August 2004 ${\sim}$ September 2005. We also compared the biological data with long-term water quality data, obtained from the Ministry of Environment, Korea and physical habitat conditions based on the Quantitative Habitat Evaluation Index (QHEI). We used ten metric systems for the IBI model to evaluate biological stream health. Overall IBI values in Kap Stream averaged 24 (range: 20${\sim}$30, n=5), indicating a "fair ${\sim}$ poor" conditions according to the modified criteria of Karr (1981) and US EPA(1993). Exclusive of 4th survey, average IBI values at the upstream reach (S1 ${\sim}$ S3)and downstream reach (S4 ${\sim}$ S5) were 20 and 24, respectively. However, in 4th survey the averages were 21 and 20 in the upstream and downstream reaches, respectively. This difference was larger in the upstream than in the downstream because of physical condition disturbed during summer monsoon. Values of the QHEI varied from 75(fair condition) to 148 (good condition) and values of QHEI in the S3 were significantly (P=0.001, n=5) lower than other sites. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were greater by 3 ${\sim}$ 8 fold in the downstream than in the upstream reach. We believe that present IBI approach applied in this study may be used as a key tool to set up specific goals for restoration of Kap Stream.

Seasonal and Stational Variation of SS and COD and Their Relationship in Doam Bay (도암만 수질의 부유물질 농도와 화학적 산소요구량의 시·공간적 특성 및 상관관계)

  • Chang, Ji-Seong;Chang, Ji-Hye;Cho, Misun;Kahng, Hyung-Yeel;Jung, Jae-Sung;Ahn, Samyoung
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.973-984
    • /
    • 2014
  • Seasonal and stational variation of SS and COD were investigated from February 2008 to December 2010 and the relationship between them was discussed. During three years monitoring, SS decreased significantly (46% decline) possibly due to the increase of precipitation and thereby resulting salinity drop. COD on average was the highest in 2009. SS was the highest in autumn and the lowest in winter, and over 72% of SS was FSS. While SS is high in the upper sampling stations of the bay with shallow water, COD values do not show any relationship to the geomorphological characteristics. $COD_{ins}$, which was defined as COD after filtration, ranged 56%(winter) ~ 44.6%(summer) and showed no correlation with SS. It indicates that high SS concentration is not necessarily related to the high $COD_{ins}$. The seasonal $COD_{ins}$/SS data, which can be interpreted as COD density in SS, shows that SS in winter contains the dense COD materials compared to the other seasons.

A Waste Load Allocation Study for Water Quality Management of the Incheon Coastal Environment (인천해안의 수질관리를 위한 오염부하량 할당에 관한 연구)

  • Kim, So-Yeon;Choi, Jung-Hyun;Na, Eun-Hye;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2005
  • This paper presents a waste load allocation study for the Incheon coastal environment, where a computer model, called AQUASEA, was applied. A finite element mesh was constructed and refined to cover the complicated geometry of Incheon coastal sea. The tidal height at 13 places of Incheon coastal boundary and flow of the Han River were given as an input condition to the tidal simulation. All pollution sources that discharge into Incheon coast were given as input data to the water quality simulation. The modeled parameters include tidal flow and COD(Chemical Oxygen Demand). The model was calibrated and verified with the field measurements. The model results showed reasonable agreements with field measurements in both tidal flow and water quality. Systems analysis showed that the pollution load from the Han River caused recognizable impacts on the water quality of Incheon coast from Yeomhwa waterway to northern area of Younghungdo. The loads from Incheon City affected water quality from the area below Youngjongdo to the area above Jawalldo. The discharge from the Sihwa Lake caused discernible impacts on the coastal zone from the dike outlet to the Incheon harbor, and pollution loads from Kyungkido affected the sea near the Oido. An effective water quality management plan was developed from the waste load allocation analysis of the validated model, that the maximum waste loads can be discharged without violating the water quality standard given in the Incheon coastal environment.

Estimates of Basin-Specific Oxygen Utilization Rates (OURs) in the East Sea (Sea of Japan) (동해 각 분지의 수층내 산소 소모율 추정)

  • Kim, Il-Nam;Min, Dong-Ha;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2010
  • The oxygen utilization rate (OUR) is one of the crucial parameters for ocean carbon cycling and climate models. However, parameterization of OUR in the East Sea (Sea of Japan) is yet to be established. We estimated the basin-specific OURs in the East Sea and fitted them with exponential functions with depth by using pCFC- 12 age and apparent oxygen utilization (AOU) measured in summer 1999. The estimated OURs are higher in the upper water column and decrease with depth, in general. The vertical distributions of the estimated OURs in the Western and Eastern Japan Basins (WJB & EJB) are very similar. The OURs in the Ulleung Basin (UB) varied greatly depending on whether the surface layer (0~200 m) data are included in the OUR estimate or not. Apparently, weaker oxygen consumption occurs in the deep layer of Yamato Basin (YB). The ranges of the OURs between 200 m and 2000 m at WJB, EJB, UB, and YB are 8.15~0.83, 8.11~0.68, 5.29~0.73, and 7.31~0.06 ${\mu}mol$ $kg^{-1}$ $yr^{-1}$, respectively. Consideration of the wintertime surface water oxygen disequilibrium condition in estimating the OUR will be necessary in the future study.

On-Line Measurement System for the Determination of Chemical Oxygen Demand (화학적 산소 요구량 측정을 위한 On-Line 측정 시스템에 관한 연구)

  • 정형근;차기철
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • A simple on-line measurement system consisting of a conventional peristaltic pump, a HPLC-type heater, and a flow-through spectrophotometer is introduced for the determination of chemical oxygen demand(CODI. The system was configured such that the reaction mixture in the highly concentrated surffuric acrid medium flowing through the PTFE reaction tubing was heated at 150℃ and the absorbance of dichromate was continuously moutored at 445 m. The same addation principle as in the standard procedure was employed akcept the use of CoSO4 as a new effective catalyst. To test the system, potassium hydrogen phthalate was selected as a COD standard material. With suitably optimized reaction condition, the applicable concentration range depends on the concentration of potassium dichromate in the oxidizing reagent. With 2.0×10-3 M and 5.0×10-4M dichromate, the linear dynamic range was observed up to 400 ppm and 100 ppm, respectively. The standards in the Unear ranges were shown to be completely oxidized, which was confirmed with sodium oxalate or Mohr's salt. In all cases, the typical reproduclbility for betweenruns was 2% or less. The proposed measurement system provides the valuable in- formation for the further development of automated analysis system based on the present standard procedure.

  • PDF

Application of Dissolved Air Flotation Technique to Improve Eutrophic Reservoir Water Quality (가압부상법을 이용한 부영양저수지의 수질개선)

  • Kim, Ho-Sub;Jung, Dong-Il;Lee, Il-Kuk;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.372-381
    • /
    • 2005
  • This study was conducted to test the efficiency of water quality improvement using the dissolved air flotation (DAF) technique in a shallow eutrophic reservoir. The application of DAF was followed by the addition of a chemical coagulant (poly aluminum chloride; PAC). The experiment was conducted in the mesocosm scale (wide ${\times}$ length ${\times}$ depth: 6 m ${\times}$ 6 m ${\times}$ 3 m). Suspended solids (SS) and volatile SS (VSS) concentration decreased by 54 ${\sim}$ 71% and 57 ${\sim}$ 79% of the initial concentrations, respectively. Total phosphorus and Chl- a concentration also decreased by 74 ${\sim}$ 92% and 54 ${\sim}$ 98%, respectively. BOD decreased by>86% while COD decrease ranged 29 ${\sim}$ 63%. Dissolved inorganic P (DIP) and dissolved total P (DTP) concentration decreased by 34 ${\sim}$ 88% and 62 ${\sim}$ 88%, respectively. After DAF application further onto the sediment, DIP-release rates from the sediment decreased by 17% (0.82 ${\to}$ 0.68 mg $m^{-2}$$day^{-1}$ in the oxic condition and 23% (2.27 ${\to}$ 1.76 mg $m^{-2}$$day^{-1}$) in the anoxic condition, compared to the release rate from the untreated sediment. DTP-release rate from both the oxic and anoxic sediments also decreased by 33% (5.62 ${\to}$ 3.78 mg $m^{-2}$$day^{-1}$) and 20% (6.23 ${\to}$ 4.99 mg $m^{-2}$$day^{-1}$), respectively. These results suggest that the DAF application both to the water column and onto the sediment be effective to improve water quality by removing particulate matters in the water column as well as reducing P-release from the sediment.