• Title/Summary/Keyword: 화학적 특성

Search Result 10,029, Processing Time 0.042 seconds

Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys (Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향)

  • Moon, Min-Kook;Kim, Young-Chan;Kim, Yu-Mi;Choi, Se-Weon;Kang, Chang-Seog;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.

Effect of Napa Cabbage (Brassica campestris var. Pekinensis) Cropping Systems on Soil Physiochemical Properties, Yield and Quality in Alpine Area of South Korea (한국 고랭지 배추 작부체계에 따른 토양, 배추 생산성 및 성분 특성 비교)

  • Bak, Gye Ryeong;Lee, Jeong Tae
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.249-256
    • /
    • 2021
  • Napa cabbage (Brassica campestris var. Pekinensis) is the main material of Kimchi so that important crop in South Korea. There are two typical napa cabbage cropping systems in the alpine area. One is cultivating napa cabbage annually while another is cultivating napa cabbage and potato biennially. In this research, we evaluated soil physiochemical properties, yield, and mineral contents of napa cabbage depending on two cropping systems. As a result, organic matter, available P2O5, exchangeable K+ was decreased after six-years of cultivation on both cropping systems. However, soil pH was only decreased in a continuous napa cabbage cropping system. Soil porosity is also decreased in both cropping systems on topsoil while is increased in rotation with potato on subsoil. The rotation system showed a significantly higher yield with a higher value of leaf and napa cabbage size than the continuous cropping system. Total nitrogen, Ca2+, and Ma2+ were increased and total carbon and phosphate decreased in both cropping systems after six-years. Especially, total nitrogen and Mg2+ were significantly higher in the continuous system while Ca2+ was higher in the rotation system. In conclusion, the cropping system influences soil physiochemical properties and plant production in an agricultural field.

Photocatalytic Decomposition of Rhodamine B over BiVO4 Doped with Samarium Ion (Sm 이온이 도핑된 BiVO4에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.146-151
    • /
    • 2021
  • Pure and Sm ion doped BiVO4 catalysts were synthesized using a conventional hydrothermal method and characterized by XRD, DRS, SEM, and PL. We also examined the activity of these materials on the photocatalytic decomposition of rhodamine B under visible light irradiation. The doping of Sm ion into BiVO4 catalyst changed the ms-BiVO4 crystal structure into the tz-BiVO4 crystal structure in the low synthesis temperature. Light absorption analysis using DRS showed that all the catalysts displayed strong absorption in the visible range of the electromagnetic spectrum regardless of Sm ion doping. In addition, an amorphous morphology was shown in the pure BiVO4 catalyst, but the morphology of the BiVO4 catalyst doped with Sm ion was changed into an ellipse shape and also the particle size decreased. In the photocatalytic decomposition of rhodamine B, Sm ion doped BiVO4 catalyst showed higher photocatalytic activity than the pure BiVO4 catalyst. In addition, the Sm3-BVO catalyst doped with 3% Sm ion showed the highest photocatalytic activity, as well as the highest formation rate of OH radicals (•OH) and the highest PL peak. This result suggests that the formation rate of OH radicals produced in the interface between the photocatalyst and water is well correlated with the photocatalytic activity.

The Significance of Cancer Stem Cells in Canine Mammary Gland Tumors (개 유선종양 내 종양줄기세포의 중요성)

  • Park, Seo-Young;Baek, Yeong-Bin;Park, Sang-Ik;Lee, Chang-Min;Kim, Sung-Hak
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.248-255
    • /
    • 2021
  • Mammary gland tumors are one of the most common cancers in female dogs, and there are various types of cells depending on the tumor type. Complex carcinoma consists of a combination of luminal epithelial and myoepithelial cells with intra-tumoral heterogeneity. However, the origins of these tumor cells and their effects on the malignancies of tumors have not been identified. Recently, it has been reported that cancer stem cells, identified in several types of human tumors, are involved in tumor heterogeneity and may also contribute to malignancies such as tumor recurrence and metastasis. Interestingly, cancer stem cells share several abilities of self-renewal and cell differentiation into multiple types of cancer cells, but they have abnormal genetic mutation and signal transduction pathways to regulate the maintenance of stem cell characters. Moreover, it is known that these cell populations contribute to cell metastasis as well as cell resistance against chemo- and radio-therapeutics that promote tumor recurrence. The existence of cancer stem cells might explain the intra-tumoral heterogeneity and cancer aggressiveness during tumorigenesis in canine mammary gland tumors. This review summarizes the characteristics and types of canine mammary gland tumors, the definition of tumor stem cells, methods of isolation, and clinical significance.

Feasibility test of treating slaughterhouse by-products using microbial electrolysis cells (미생물전기분해전지를 이용한 도축부산물 처리 가능성 평가)

  • Song, Geunuk;Baek, Yunjeong;Seo, Hwijin;Kim, Daewook;Shin, Seunggu;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • The aim of this study is to evaluate the possibility of treating slaughterhouse by-products using microbial electrolysis cells (MECs). The diluted pig liver was fed to MEC reactors with the influent COD concentrations of 772, 1,222, and 1,431 mg/L, and the applied voltage were 0.3, 0.6, and 0.9 V. The highest methane production of 5.9 mL was obtained at the influent COD concentration of 1,431 mg/L and applied voltage of 0.9 V. In all tested conditions, COD removal rate was increased as the influent COD concentration increased with average removal rate of 62.3~81.1%. The maximum methane yield of 129~229 mL/g COD was obtained, which is approximately 80% of theoretical maximum value. It might be due to the bioelectrochemical reaction greatly increased the biodegradability of pig liver. Future research is required to improve the methane yield and digestibility through optimizing the reactor design and operating conditions.

Synthesis and Characterization of Interfacial Properties of Sorbitan Laurate Surfactant (Sorbitan Laurate 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Seul;Kim, ByeongJo;Lee, JongGi;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • The critical micelle concentration (CMC) of sorbitan laurate SP 20 surfactant in this paper was near $7.216{\times}10^{-4}mol/L$ and the surface tension at CMC was about 26.0 mN/m, which showed higher CMC and lower surface tension than those of octylphenol ethoxylate octylphenol ethoxylate (OPE) 10 surfactant. Dynamic surface tension measurement using a maximum bubble pressure tensiometer showed that the adsorption rate at the interface between air and surfactant solution was found to be slower with SP 20 surfactant, presumably due to a low mobility of SP 20 surfactant monomer. The contact angle of SP 20 surfactant solution was observed to decrease with an increase in surfactant concentration and showed a larger value than that of OPE 10 surfactant solution. Half-life time for foams generated with 1 wt% surfactant solution was also larger with SP 20 surfactant, which indicated higher foam stability with SP 20 surfactant. Dynamic behavior study reveals that the solubilization of n-decane oil was much lower with SP 20, which is in good agreement with experimental results of foam stability, contact angle and CMC. Dynamic interfacial tension measurement by a spinning drop tensiometer shows that interfacial tensions at equilibrium condition in both systems were almost the same but the time required to reach equilibrium was longer with SP 20.

Thermotropic Liquid Crystalline Properties of α,ω-Bis(4-cyanoazobenzene-4'-oxy)alkanes (α,ω-비스(4-사이아노아조벤젠-4'-옥시)알케인들의 열방성 액정 특성)

  • Jeong, Seung Yong;Kim, Hyo Gap;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.358-366
    • /
    • 2011
  • A homologous series of linear liquid crystal dimers, the ${\alpha},{\omega}$-bis(4-cyano-azobenzene-4'-oxy)alkanes (CATWETn, where n, the number of methylene units in the spacer, is 2~10) were synthesized, and their thermotropic liquid crystalline phase behavior were investigated. The CATWETn with n of 3 and 6 exhibited monotropic nematic phases, whereas other derivatives showed enantiotropic nematic phases. The nematic-isotropic transition temperatures of the dimers and their entropy variation at the phase transition showed a large odd-even effect as a function of n. This phase transition behavior was rationalized in terms of the change in the average shape of the spacer on varying the parity of the spacer. The thermal stability and degree of order in the nematic phase and the magnitude of the odd-even effect of CATWETn were similar to those for the methoxy-, nitro-, and pentyl-substituted dimers, while they were significantly different from those for the monomesogenic compounds, 1-{4-(4'-cyanophenylazo)phenoxy}alkylbromides and the side-chain liquid-crystalline polymers, the poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of 'virtual trimer model' by Imrie.

Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel (터널 배수공의 재질에 따른 스케일 부착 특성에 관한 연구)

  • Chu, Ickchan;Nam, Seunghyuk;Baek, Seungin;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.51-57
    • /
    • 2011
  • The calcium hydroxide($Ca(OH)_{2}$) which is flowed into the deteriorated tunnel by groundwater is reacted with carbon dioxide($CO_{2}$) and the vehicle's exhaust gas ($SO_{3}$). So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. Most by-products are composed of $CaCO_{3}$ with calcite from a chemical experiment. The purpose of this study is mainly focused on comparison of attachment on each material of drainage pipe (teflon-coated steel pipe, silicon-Oil coated pipe, acrylic pipe and PVC pipe). The test was progressed to disembogue the CaO aqueous solution and tunnel outflow into each of the pipes. The experimental results show that the most produced scale pipe is PVC material and the followings are Acrylic pipe, Silicon-Oil coating pipe and Teflon coating pipe. But the long-term test results showed that teflon-coated steel pipe had a problem with durability because soil which was contained in the tunnel outflow occurred detachment of coating and corrosion of the steel pipe.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.

Thermal and UV Resistance of Polytrimethylene Terephthalate Bulked Continuous Filament (PTT BCF) dyed with Vat Dye via Pad-steam Method and its Dyeing Properties (Pad-steam 법을 활용한 PTT BCF에 대한 vat 염료의 염색 특성과 내열성 및 내광성 효과)

  • Lee, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.23-32
    • /
    • 2020
  • This study investigated the thermal degradation and fading behavior of PTT dyed with vat dye and its dyeing ability. The PTT sample was dyed with vat dye using an acid treatment and pad-steam method to improve the dyeing performance. This method made dye particle nanosize and allowed it to penetrate the polymer material easily. The sample dyed using the pad-steam method showed level dyeing and enhanced dyeing affinity, compared to the batch-dyeing method. The degradation behavior of PTT dyed with vat dye after each heat and UV treatment was examined with the change in tensile strength or K/S value on the sample. The tensile strength and K/S values of the sample dyed with vat dye after the heat and UV treatment decreased with increasing temperature and exposure time. Although they showed high degradation under severe conditions, its rate constant was improved compared to the samples dyed with disperse dye. Consequently, acid treatment and the pad-steam method resulted in the introduction of vat dye on PTT. In addition, the PTT dyed with vat dye showed enhanced thermal and UV resistance because of their high molecular weight and chemical structure for stable adsorption behavior.