• Title/Summary/Keyword: 화학적 반응

Search Result 5,097, Processing Time 0.035 seconds

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Platinum complex oxide electrode catalyst for the solubilization of sewage sludge (하수슬러지 가용화 위한 백금족 복합 산화물 촉매 전극 개발)

  • Yoo, Jaemin;Kim, Hyunsook;pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.352-360
    • /
    • 2016
  • The purpose of this study was to determine the electrochemical properties develop DSA electrode for sewage sludge solubilization. Using Ir as a main catalyst, the catalyst selected for the sewage sludge solubilization durability and proceeds to functional electrode suitable for sewage sludge electrolysis experiment were obtained the following results. Less mass reduction of the sintering temperature of the main catalyst, Ir coated electrodes, the endothermic reaction zone $300^{\circ}C$ to $500^{\circ}C$, which was selected from a range of experiments. The efficiency of the catalyst results came up to $350^{\circ}C$ best. Each Binder stars (Ta, Sn, W) in this experiment was the biggest catalyst efficiency at $350^{\circ}C$. Used as a binder, $TaCl_5$, $SnCl_4$, $WCl_6$ of the Ta and without affecting the other characteristics of the main catalyst than Sn, W. For the 50% $IrO_2$ electrode is 1.4 V (vs. Ag / AgCl) in a current of about $29mA/cm^2$ was caused to evaluate the effectiveness of the electrode.

A Study on the Liquid-Liquid Extraction by Use of Hydrophobic Hollow Fiber Module (소수성 중공사 모듈에 의한 액-액 추출에 관한 연구)

  • Kim, Young-II;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.237-244
    • /
    • 1996
  • Liquid-liquid extractions by use of microporous hollow fiber modules are fast compared with conventional extraction equipment because of the large surface area per volume. In these modules, the extractant and feed can be contacted at high speed and two flows are completely independent, so there are no problems with loading and channeling. In this paper, it was investigated the extraction selectivities for liquid-liquid extraction of Fe(II) and Ni(II) from dilute aqueous solution into TOA (tri-n-octylamine) and EHPNA (bis(2-ethylhexyle)hydrogenphosphite) as organic extractants by using the hydrophobic hollow fiber module. To determine the rate controlling step for mass transfer in hollow fibers, we also examined the effect of inside and outside flow rates of the hollow fiber module. From these experiments, we identified for the extraction of system with high partition coefficient in hydrophobic hollow fibers, mass transfer in the inside aqueous feed dominated the overall mass transfer, and in this paper, correlation between $K_w$ and $v_t$ was obtained as $K_w{\frac{d}{D}}=6.22\(\frac{d^2v_t}{LD}\)^{1/3}$ On the other hand, for the system with low partition coefficient, the resistance in the inside of hollow fibers was much less than membrane resistance because the extraction was not simple in the micropore. Thus, for systems with high partition coefficients, hydrophobic hollow fibers would be a better choice.

  • PDF

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

Chemical Compounds and Biological Activity of Phellinus baumii (상황버섯의 화학성분 및 생리활성 효과)

  • Shon, Mi-Yae;Seo, Kwon-Il;Choi, Sun-Young;Sung, Nak-Ju;Lee, Sang-Won;Park, Seok-Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.524-529
    • /
    • 2006
  • Chemical compounds, hydrogen peroxide and nitrite-scavenging activities of Phellinus baumii (PB) were investigated to expand the utilization of PB as functional food material. Total mineral contents of PB was 534.3 mg% and potassium was the highest content being 224 mg%. Total and reducing sugars were 56.2% and 9.8%, respectively The contents of free amino acids (FAAs) were in a range of $16.9{\sim}765.5mg%$ with the major FAAs of phenylalanine, aspartic acid, glutamic acid, leucine, serine and valine. The contents of total phenolic compounds in methanol and hot water extracts of PB were 33.3 and 20.7 mg/100 mL, respectively and were higher than those of other solvent extracts. Hydrogen peroxide-scavenging activity (80%) of methanol extract at $10{\mu}g/mL$ for 30 min was similar to tocopherol (83.1%) as control. Nitrite-scavenging activity of extracts of methanol and hot water at 500 mg/mL and pH 1.2 were 57.3% and 51.8%, respectively and then their effects were increased by lowering pH. The present results showed that the methanol and water extracts of Phellinus baumii exhibited strong hydrogen peroxide and nitrite-scavenging activities.

Effect of Dry and Wet Millings on Physicochemical Properties of Black Rice Flours (건식 및 습식제분 흑미 쌀가루의 물리화학적 특성)

  • Jun, Hyun-Il;Yang, Eun-Jin;Kim, Young-Soo;Song, Geun-Seoup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.900-907
    • /
    • 2008
  • The physicochemical properties of black rice flours produced from dry and wet milling were carried out to investigate their applications in food processing industry. The dry milled black rice flours showed lower fat, protein, ash, and anthocyanin contents than those of wet milled black rice flours with no effect due to number of millings. Average particle sizes ($379{\sim}288\;{\mu}m$) of dry milled flours were bigger than those ($336{\sim}253\;{\mu}m$) of wet milled flours. Particles with 60 mesh or more increased with increasing milling times. Wet milled flours had higher damaged starch, water solubility index (WSI), and water absorption index (WAI) compared to dry milled flours. Pasting properties measured by rapid visco analyzer (RVA) resulted in higher pasting temperatures in dry milled flours ($62.5{\sim}69.4^{\circ}C$) than wet milled flours ($46.1{\sim}46.4^{\circ}C$). As the number of milling times increased, pasting temperature of wet milled flours were not effected. Dry and wet milling resulted in reduced trough, final viscosity, and consistency with increasing milling times.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon (입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.