기저면에 구조적 결함을 도입함으로써 그래핀과 $MoS_2$와 같은 이차원 결정의 물리, 화학, 전기 및 기계적 성질을 제어하려는 연구가 폭넓게 수행되고 있다. 본 연구에서는 플라즈마 속의 산소 래디컬을 이용하여 기계적 박리법으로 만들어진 단일층 그래핀과 $MoS_2$ 표면에 구조적 결함을 유도하고 제어하는 방법을 개발하였다. 라만 및 광발광 분광법을 통해 생성된 결함 밀도를 측정하고 전하 밀도 등의 화학적 변화를 추적하였다. 그래핀의 경우 산소 플라즈마 처리 시간에 따라 결함(defect)의 정도를 보여주는 라만 D-봉우리의 높이와 넓이가 커짐을 확인하였고 이를 G-봉우리의 높이와 비교하여 정량하였다. $MoS_2$의 경우 $E{^1}_{2g}$와 $A_{1g}$-봉우리의 높이가 점점 감소하고 광발광의 세기 또한 감소함을 확인하였다. 또한 본 연구에서는 기판의 편평도가 결함 생성 속도에 미치는 영향을 비교 및 분석하여 반응 메커니즘을 제시하고자 한다.
Differential Scanning Calorimetry(DSC)를 이용하여 파이로점화장치에 사용되는 세 가지 고에너지 물질의 열분석 실험을 수행하였다. DSC 실험 데이터를 이용하여 고에너지 물질의 반응속도식을 추출해내는 이론적 방법을 제안하고 반응속도식 추출을 수행하였다. DSC 실험 결과는 Friedman 등전환법으로 분석되었다. 질량분율에 따른 활성화에너지와 빈도인자를 추출해 내어 반응속도식을 완성하였다. 추출된 반응속도식은 고에너지 물질의 화학반응과정을 몇 단계의 주요단계로 가정하는 형태가 아닌 전체 화학 반응 과정을 나타내는 형태를 갖는다. 이는 기존의 열분석 실험을 통해 추출되는 화학반응속도식 형태에 비해 이론적 측면과 정확성 측면에서 상당한 장점을 갖는다. 도출된 반응속도식을 이용하여 실제 추진기관에 운용되는 세 가지 고에너지 물질의 성능변화를 20년에 대하여 예측하였다.
가열 속도, 몰 공간속도, 질화반응온도 등 다양한 실험 조건을 변화하며 바나디움 산화물과 암모니아와의 승온 질화반응을 통하여 바나디움 산화질화물을 제조하여 특성분석을 수행하였으며 제조된 바나디움 산화질화물 상에서 암모니아 분해반응의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), 수소 승온환원(H2-TPR), 산소 존재 하 승온산화 (TPO), 암모니아 탈착 (NH3-TPD), 투과전자현미경(TEM) 분석을 수행하였다. 340 ℃에서 5 m2 g-1의 낮은 비표면적을 갖는 V2O5의 환원에 의하여 V2O3 으로의 변환은 미세 기공 형성에 의해 115 m2 g-1 높은 비표면적 값을 보여주었으며 그 이상의 질화반응 온도가 증가함에 따라 소결현상에 의해 지속적인 비표면적의 감소를 초래하였다. 비표면적에 가장 큰 영향을 미치는 질화반응 변수는 반응온도였으며, 단일 상의 VNxOy의 x + y 값은 질화반응온도가 증가함에 따라 1.5에서 1.0으로 근접하였으며 680 ℃의 높은 반응온도에서 입방 격자상수 a는 VN 값에 근접하였다. 본 실험 조건 중에 질화반응온도가 가장 높았던 680 ℃에서 암모니아 전환율은 93%로 나타났으며 비활성화는 관찰되지 않았다.
카이랄 ${\alpha},{\beta}$-불포화 N-Acyloxazolidinone은 Diels-Alder 반응의 친다이엔체로서 dialkylaluminium chloride 촉매하에서 높은 반응성과 부분입체선택성을 가지는 것이 이미 실험적으로 알려져 왔다. 제안된 Diels-Alder 반응의 메커니즘을 토대로 진행한 DFT 계산에서 dimethylaluminium chloride(이하 DMAC)는 $TiCl_4$에 비해 높은 endo 선택성을 띄는 반면, $TiCl_4$는 부분입체선택성에서 우세했다. 특히 DMAC는 현저히 낮은 활성화 에너지를 나타내어 이론적으로 반응속도의 측면에서 상당한 이득이 있음을 예측할 수 있다. 또한 chiral auxiliary로서 phenyl과 isopropyl은 구조적인 차이로 인해 선택성에서 역시 차이를 보였다. 계산화학적인 방법을 통한 입체선택적 Diels-Alder 반응의 분석은 알려진 메커니즘에 대한 명확한 증거를 제시할 뿐만 아니라 다른 유기합성 반응에 있어서 새로운 반응을 개발하는 데 이론적인 근거를 뒷받침 한다.
본 연구는 토양이나 지하수 원위치 화학적 산화법(In-Situ Chemical Oxidation, ISCO)에서 사용할 수 있는 산화제 Persulfate를 상온에서 활용할 수 있도록 RDX를 처리대상물질로 연구하였다. Persulfate로 RDX를 처리한 결과, 반응은 유사1차반응으로 나타났으며 온도가 증가함에 따라 분해속도도 증가하였고, 이 때 활성화에너지(Activation energy)는 $1.14{\times}10^2kJ/mol$으로 산정되었다. Persulfate에 의한 RDX의 분해반응속도는 pH에 비례하여 증가하였으며, pH값이 4, 6, 8일 때 반응속도의 변화가 크지 않았다. 그러나 pH 10에서는 13배 이상 증가하였는데, persulfate에 의한 산화가 아니라 alkaline hydrolysis로 나타났다. Persulfate에 의한 RDX의 분해반응속도는 persulfate/RDX의 몰 비율에 따라 선형적으로 증가하였으며, $70^{\circ}C$에서 측정한 비례상수는 $4{\times}10^{-4}$ ($min^{-1}$/몰 비율)이었다. 용액 내 천연유기물(NOM) 농도가 증가함에 따라 persulfate에 의한 RDX 분해속도 선형 감소하였으며 $70^{\circ}C$, persulfate/RDX 몰비 10/1에서 측정한 비례상수는 $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$)이었다. 반응속도의 감소는 NOM 첨가량에 선형적으로 비례하였다. NOM 20 mg/L을 첨가한 반응의 Ea값은, 무첨가 반응에서 산정된 Ea값과 3.3% 오차에 불과하였는데, 이는 NOM의 첨가가 본래의 산화반응을 변화시키지는 않음을 의미한다.
폐 인쇄회로기판(WPCBs)은 Cu, Ni, Au, Ag, Pd 등의 희귀금속을 함유하고 있다. 폐 전자제품의 양이 지속적으로 증가하므로, WPCBs에서 희귀금속을 회수하는 방법에 대한 연구가 필요하다. WPCBs에서 유리섬유 보강 에폭시수지로부터 금속과 유리섬유 및 에폭시 수지로 원재료로 분리하는 방법으로 화학적 재활용 방법은 어려운 방법으로 알려져 있다. 본 연구에서는 WPCBs에서 금속 및 비금속성분을 분리하는 화학적 방법으로 에폭시 수지의 해중합을 methylpyrrolidone와 dimethylformamide 용매에서 $K_3PO_4$ 촉매를 사용하였다. WPCBs의 반응온도를 $160{\sim}200^{\circ}C$범위에서 진행하였고 반응시간을 2~12 h하여 반응을 진행하였다. WPCBs의 반응 후 얻은 재생 유리섬유를 열중량분석기를 통해 분석하였으며 WPCBs에서 에폭시 수지의 용해도를 조사하였다.
전자충격반응을 고려한 three moment 플라즈마 모델과 전기적 중성성분의 반응을 고려한 유체 유동 모델을 결합하여 용량결합형 산소플라즈마에 대한 2차원적 전산모사 연구를 수행하였다. 전자의 에너지에 의하여 좌우되는 전자충격반응에 대한 반응속도는 전자와 $O_2$ 및 O 사이의 전자충돌단면적으로부터 계산되었다. 플라즈마 모델과 유체 유동 모델을 결합하고 상세한 반응메커니즘을 포함시킴으로써 전하를 띠는 전자와 이온($O_2{^+}$, $O^+$, $O_2{^-}$, and $O^-$) 그리고 기저상태의 산소($O_2$ and O)뿐만 아니라 $O_2(a^1{\Delta}_g)$, $O_2(b^1{{\Sigma}_g}^+)$, $O(^1D)$, $O(^1S)$ 등과 같이 산소플라즈마 특성에 중요한 역할을 하는 준안정상태 성분들의 시공간적 분포를 예측할 수 있었다. 또한 산소플라즈마의 전산모사로부터 sheath 경계에 이중층이 존재함을 확인할 수 있었다.
본 연구에서는 이산화탄소와 석탄을 사용하여 합성가스 CO를 생산하는 실험을 수행하였다. CO 합성특성은 KOH 촉매를 사용한 화학적 활성화 방법에 의해 조사되었으며, 제조공정은 $CO_2$ 전환반응에서 석탄과 활성화 촉매 비율, 가스 유량과 반응온도 등과 같은 실험변수들을 분석함으로서 최적화되었다. KOH 촉매를 사용하지 않은 경우, 반응온도 $950^{\circ}C$와 $CO_2$ 유량 300 cc/min에서 65% $CO_2$ 전환율을 얻었으며, 반면에 촉매를 사용한 경우 같은 반응조건에서 98.1%의 전환율을 얻었다. 석탄의 활성화촉매 반응물의 비(석탄 : KOH = 4 : 1)가 다른 반응물 비에 대해 더 좋은 $CO_2$ 전환율과 CO 선택도 보여줌을 알 수 있었다.
0.1M tetraethylammoniumperchlorate (TEAP)를 지지전해질로 한 acetonitrile속에서 direct current (DC), differential pulse (DP) polarography 및 cyclo voltammetry (CV) 방법에 의한 Sumithion의 전기화학적 환원반응은 -1.0~-2.50volt vs. Ag-AgCl 범위에서, 제1단계로 P-Oph 결합의 분열에 의하여 dimethylthiophosphonyl radical과 p-nitro-m-cresol이 생성되는 1전자 유사가역반응이 일어나고, 제2단계는 전형적인 1전자 비가역 반응으로 dimethylthiophosphonyl radical이 dimethylthiophosphonate가 되며, 제3단계 반응은 2.7volt vs. Ag-AgCl의 높은 음전위에서 p-nitro-m-cresol은 4전자 비가역반응에 의한 nitro group의 환원으로 p-hydroxy-amino-m-cresol이 생성되는 총 3단계의 비가역적인 electron-transfer chemical reaction (EC) 메카니즘으로 전극반응이 진행됨을 알았다.
연구배경 : 절제가 불가능한 비소세포 폐암 환자에 대한 복합화학요법의 유용성은 아직도 분명치 않다. 그러나, cisplatin을 주축으로하는 복합화학요법의 반응율은 항암제 단독 투여시의 반응율 보다, 또한 high-dose cisplatin군의 반응율이 low-dose cisplatin군의 반응율보다 높은 것으로 최근 보고되고 있다. 복합화학요법(high VPP), 복합화학요법과 방사선 치료의 병행요법이 진행된 비소세포 폐암에서 생존율을 증가시키는지 알아보기 위해 본 연구를 시작하였다. 방법 : 조직학적으로 비소세포 폐암으로 진단된 stage III이상의 환자 35명을 대상으로 하였다. 이들중, 19명은 VP-16과 high-dose cisplatin(100 $mg/m^2$)으로 구성되는 복합화학요법 그리고 복합화학요법과 방사선 치료를 시행받았으며, 나머지 16명은 치료를 받지 않았다. 두군간의 생존율과 반응율의 차이 및 치료에 다른 부작용을 알아보기 위해 환자의 병록 일지를 검토하였다. 결과: 1) 전체적인 객관적 반응율은 한명의 완전관해를 포함하여 47%(9/19) 였다. 2) 복합화학요법과 방사선 치료를 병행하여 받은 환자군에서의 반응율은 한명의 완전관해를 포함하여 60%(6/10) 였으며, 3개월, 6개월 및 127개월 생존율은 각각 100%, 70% 및 40% 였다. 3) 복합화학요법을 받은 환자군에서의 반응율은 완전관해 없이 33%(3/9) 였으며, 3개월, 6개월 및 12개월 생존율은 각각 78%, 67% 및 33% 였다. 4) 전체적으로 치료군에서 비치료군에 비해 통계적으로 유의하게 (p<0.05) 생존기간이 연장되었다(중앙생간 307일과 95일). 5) 여러 예후인자에 따른 분석에서 운동능력이 좋을수록, stage III에서 그리고 편평상피암에서 좋은 반응율을 보였다. 6) 부작용으로서는 오성과 구토(100%), 탈모증(90%), 빈혈(79%), 백혈구 감소증 (69%), 혈소판 감소증(2%), creatinine의 증가(16%) 그리고 신경독성(5%) 등이 있었다. 결론 : 이상의 결과로 진행된 비소세포 폐암 환자에 대한 hign VPP 복합화학요법은 비치료군에 비해 치료군에서 생존율을 높이는 비교적 좋은 효과가 있으므로 좋은 적응증을 가진 환자들을 선택하여 효과적인 항암치료 및 방사선 치료를 시행하여야 할 것으로 사료된다. 그러나, hign VPP 복합화학요법에 따른 효과 개선은 본 연구 결과에선 뚜렷하지 않으므로 보다 많은 증례에서 추구 연구가 필요하리라 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.