• Title/Summary/Keyword: 화학반응 메카니즘

Search Result 373, Processing Time 0.025 seconds

Solvent Effect on the Aquation of $trans-[Cr(en)_2Br_2]^+$ Ion and its Mechanism ($trans-[Cr(en)_2Br_2]^+$ 착이온의 수화반응에 미치는 용매효과와 그 반응메카니즘)

  • Jeong, Jong Jae;Lee, Seong Ho;Baek, Seong O
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 1990
  • The rate constants for the solvolysis of $trans-[Cr(en)_2Br_2]^+$ ion were determined by the spectrophotometric method in methanol-, ethanol-, acetone-, and acetonitrile-water mixtures, at 20, 25, 30, and 35$^{\circ}C$, respectively. The rate constants increased with increasing co-solvent compositions. The rate constant did not show any relation with the reciprocal of dielectric constant of the solvent-mixtures. The m values of Grunwald-Winstein equation for methanol-, ethanol-, acetonitrile-, and acetone-water mixtures are 0.109, 0.103, 0.101, and 0.095, respectively. A free energy cycle for the process from the initial state to the transition state in water and water + co-solvent mixtures shows that the change in solvation at the transition state has a dominant effect on the rate. From the above results, it is believed that the mechanism for the aquation of this complex is the Id mechanism.

  • PDF

Theoretical Studies on The Cationic Polymerization Mechanism of Oxetanes (산촉매하의 옥세탄 공중합에 관한 분자 궤도론적 연구)

  • Cheun, Young-Gu;Kim, Joon-Tae;Park, Seong-Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.636-644
    • /
    • 1991
  • The cationic polymerization of substituted oxethanes which have pendant energetic groups such as methoxy, azido, and nitrato are investigated theoretically using the semiempirical MINDO/3, MNDO, and AM1 methods. The nucleophilicity and basicity of substituted oxethanes can be explained by the negative charge on oxygen atom of oxetanes. The reactivity of propagation in the polymerization of oxetanes can be represented by the positive charge on carbon atom and the low LUMO energy of active species of oxetanes. The reaction of the energetic cyclic oxonium ion forms to the open chain carbenium ion forms is expected by computational stability energy of the oxonium and carbenium ion (about 10~20 kcal/mole) favoring the carbenium ion. The relative equilibrium concentration of cyclic oxonium and open carbenium ions is found to be a major determinant of mechanism, owing to the rapid equilibrium of these cation forms and the expectation based on clauclation that the prepolymer propagation step SN1 mechanism will be at least as fast as that for SN2 mechanism.

  • PDF

Kinetic Studies on the Aquation of Tetrahedral Copper (II) and Cobalt (II) Complexes (정사면체 구조를 갖는 Cu (II) 및 Co (II) 착화물들의 아쿠오화반응에 관한 연구)

  • Kim, Young-Inn;Choi, Sung-Nak;Kim, Jung-Sook;Kim, Hae-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.122-129
    • /
    • 1988
  • The rates of aquation of sparteine cobalt(II) halide and sparteine copper(II) halide were investigated in the citrate buffer solutions. The aquation of cobalt(II) complexes proceeds via D-mechanism and the catalytic effect of halide ions is not observed. The aquation of copper(II) complexes proceeds via $I_d$-mechanism and is catalyzed by the presence of cyanide and halide ions, and the aquation rate is pH dependent. The different mechanistic behavior of cobalt(II) complexes from corresponding copper(II) complexes seems to be attributed to the weakness of Co-N bond in the coordination sphere.

  • PDF

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on $ZnCe_{1+y}O_2$ ($ZnCe_{1+y}O_2$상에서 일산화탄소의 산화반응 메카니즘)

  • Kim Keu Hong;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.102-108
    • /
    • 1984
  • The catalytic oxidation of CO has been investigated on $ZnCe_{1+y}O_2$ at temperatures from 300 to $500^{\circ}C$ under various P_{CO} and PO_2 conditions. The oxidation rates have been correlated with 1.5-order kinetics: first order with respect to CO and 0.5 order with respect to O2. CO appears to be absorbed essentially on the O lattice of $ZnCe_{1+y}O_2$ as a molecular species, while $O_2$ adsorbs on an O vacancy as an ionic species. The conductivity data show that CO adsorption contributes electron to the conduction band and the adsorption process of $O_2$ withdraws it from an O vacancy. The oxidation mechanism and the defect model of $ZnCe_{1+y}O_2$ are inferred at given temperature and $PO_2'$s from the agreement between the conductivities and kinetic data. It is suggested that CO absorption is the rate-controlling.

  • PDF

Nucleophilic Substitution Reactions of Benzyl Halides with Pyridines in MeOH-MeCN Mixtures (MeOH-MeCN 혼합용매계에서 할로겐화 벤질과 피리딘 사이의 친핵성 치환반응)

  • Song Ho Bong;Lee Ikchoon
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.416-421
    • /
    • 1988
  • Kinetic studies for the nucleophilic substitution reactions of benzyl halides(para-substituted benzyl bromides and benzyliodide) with substituted pyridines in MeOH-MeCN mixtures have been carried out in order to elucidate the reaction mechanism. Cross interaction coefficient, ${\rho}_{XY}$ values suggested that the reactions between benzylhalides and substituted pyridines exhibit an dissocitive $S_N$2 mechanism. Hammett (${\rho}_X$, ${\rho}_Y$), Br${\o}$nsted ${\beta}_N$ and solvatochromic correlation coefficient a, s, a/s values were illustrated. Kinetic results were compared between potential energy surface model and quantum mechanical model. The quantum mechanical approach showed to be consistent with kinetic results.

  • PDF

The Kinetics and Mechanism of the Hydrolysis of a 1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene (1,1-Dicyano-2-p-dimethylaminophenyl-2-chloroethylene의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Tae Rin Kim;Tae Seong Huh
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.430-436
    • /
    • 1974
  • The rate constants of hydrolysis of 1,1-dicyano-2-p-dimethylaminophenyl-2-chloroethylene(DPC) were determined at various pH and the rate equation which can be applied over wide pH range is obtained. From the rate equation the mechanism of the hydrolysis of a DPC over wide pH range is fully explained; below pH 3 and above pH 7.5, the rate constant is proportional to the concentration of hydronium ion and hydroxide ion, respectively. However, in the range of pH 3 to 7.5, water, hydronium ion and hydroxide ion catalyze the hydrolysis of DPC.

  • PDF

Oxygen-atom Transfer of Bis(diethyldithiocarbamato)dioxomolybdenum (VI) with Triphenylphosphine in 1,2-Dichloroethane (1,2-디글로로에탄에서 트리페닐포스핀과 비스(디에틸디티오카바마토) 디옥소몰리브덴 (VI) 의 산소이동 반응)

  • Kim, Chang Su;Se June Song;Chang Eon Oh
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.477-477
    • /
    • 1989
  • The rates of the reaction of $[MoO_2(S_2CNEt_2)_2]$ with triphenylphosphine in 1,2-dichloroethane have been determined by the spectrophotometric method. The increase in the initial absorbance has been interpreted as a result of the production of $[Mo_2O_3(S_2CNEt_2)_4]$ and the decrease in absorbance then corresponds to the reduction of $[M_2O_3(S_2CNEt_2)_4]$. The data suggest mechanisms involving the enzymatic reaction in the first stage and the decay of intermediate, ${\mu}$-oxo molybdenum (V) dimer in the second stage.

  • PDF

Graft Copolymerization to Proteins (III). Mechanism of Cerium (IV) Ion-Initiated Graft Copolymerization (단백질에 대한 그라프트 공중합 (제3보). Cerium (IV) 이온에 의한 비닐 단위체의 그라프트 공중합에 대한 메카니즘)

  • Iwhan Cho;Kwang-Duk Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.316-320
    • /
    • 1976
  • Based on the results of graft copolymerization to proteins, an attempt is made to derive the rate equations to explain the mechanism of Ce(IV) ion-initiated graft copolymerizations. In this system the oxidative termination by Ce(IV) $[R{\cdot}+ Ce(IV) ${\rightarrow}$ R(inert) + Ce(III) + H^+]$ is considered characteristic particularly in higher concentration of Ce(IV) ion. The change in the mode of termination reactions with change in Ce(IV) ion concentration makes possible the presence of an optimum Ce(IV) ion concentration for maximum graft copolymerization yield. This effect is reflected in presently derived equations.

  • PDF

Substituent Effects on the Wallach Rearrangement of 4'-Halogenated Azoxybenzenes in Conc. Sulfuric Acid : Reaction Mechanism and Linear Free Energy Relationship (황산 수용액내에서 4'-Halogenated Azoxybenzenes의 Wallach Rearrangement 반응에 대한 치환체효과 : 반응메카니즘과 Linear Free Energy Relationship)

  • Keum Sam-Rok;Lee Hyo-Il
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.148-153
    • /
    • 1993
  • The Wallach rearrangement of 4'-halogenated azoxybenzenes in strong sulfuric acid was reinvestigated by UV-Vis spectrophotometric method. Interestingly an excellent linearity $(logk_{obs}=-0.61\;{\sigma}_R{^+} -3.29,\;{\gamma = 0.998)$ was obtained on plotting log (rate) vs. substituent constant, ${\sigma}_R{^+}$, which is known as the Pi delocalization parameter. Thus B-H mechanism via a charged intermediate $(DC^{++})$, which can be largely stabilized by resonance, is far more favored for the Wallach rearrangement.

  • PDF

Kinetics and Mechanism of Reaction of Hydrogen Peroxide with Copper(Ⅱ)-Schiff Base Complexes (구리(Ⅱ)-시프염기 착물과 과산화수소의 반응속도 및 메카니즘)

  • Kim, Sun-Deuk;Joung, Mu-Su;Jin, Gyoung-Rok;Kim, Chang-Su
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.932-939
    • /
    • 1995
  • Rates of the decomposition of hydrogen peroxide by copper(Ⅱ)-Schiff base complexes were measured at various concentrations of hydrogen peroxide. Decomposition rates of hydrogen peroxide increased with increasing pH for CuⅡBSDT and CuⅡBSTP but then decreased with the same variation of the pH for CuⅡBSTT. A possible mechanism in accord with experimental results was proposed. The mechanism involves the deprotonation of copper(Ⅱ)-Schiff base complexes of hydrogen peroxide, followed by the formation of peroxo complexes at the rate-determining step.

  • PDF