• Title/Summary/Keyword: 화재 손상

Search Result 243, Processing Time 0.034 seconds

Study on the Performance Deterioration of Erosion-corrosion Damaged Automotive Water Pump (침식 마모 손상된 차량용 워터펌프의 성능저하 연구)

  • Jeon, Seung-Won;Park, Chan-Seong;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • A flow analysis for the erosion-corrosion damaged automotive water pump which causes vehicle fire is numerically performed using the CFX program, computational fluid dynamics (CFD) code. The blade bending deformation and the blade clearance enlargement are considered in the analysis of performance reduction. For the cavitation analysis, the homogeneous multi phase model is adopted using the Ralyleigh-Plesset model for the rate equation controlling vapor generation and condensation.

Analysis of a Car Fire Case Caused by the Overheating of a Diesel Particulate Filter (매연포집필터 과열로 발생한 디젤승용차화재 원인의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • This study analyzed the case of diesel car fires that occurred while driving in a tunnel 5 days after maintenance at a car service center. The results of the investigation and analysis found that a large amount of white foreign matter adhered to the inside of the exhaust port and the insulating plate above the DPF (diesel particulate filter) installed in the middle of the exhaust pipe was melted and lost. In particular, the metal floor of the car above the DPF was molten and pierced, and the rubber mat placed on the metal floor was burnt. Moreover, while the exhaust pipe in front of the DPF showed no overheating mark, such a mark was observed in the exhaust pipe from the DPF to the exhaust port. Because these findings may appear only when the DPF is overheated and ignited, this car fire is believed to have been caused by internal overheating of the DPF. The car fire investigation of this study suggests that if white foreign matter is found in the inside of the exhaust port during a fire cause investigation of a diesel car, the cause of the fire should be determined by removing the DPF and examining the internal damage of the DPF.

Analysis of the Impact of Fire and Explosion Accidents due to LNG Leaks in the LNG Re-gasification Process (LNG 재기화 공정에서 LNG 누출에 따른 화재 및 폭발사고의 피해영향 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.825-833
    • /
    • 2018
  • In this study, one calculated the range of damage to the combustion characteristics according to the composition of LNG and the size of leaking holes, and analyzed the damage effect in case of leakage accidents caused by pipe damage in the re-gasification process for the LNG supply system. In order to confirm the combustion characteristics according to LNG composition, there was no significant difference in the result of risk analysis by LNG-producing areas. However, the higher the methane content of the components, the lower the risk of flash fire, hazardous areas of overpressure due to explosion, and thermal radiation damage caused by jet fire. In addition, one investigated the effect of leakage, holes, and ruptures on the risk range and explosions according to the size of the pipe-leakage hole. Also, the influence of overpressure and the range of damage from radiant heat could be predicted. One confirmed the effect of LNG composition and pipe-leakage size on fire and explosion.

An Experimental Study for Supposed Heating Temperature of Deteriorated Concrete Structure by fire Accident (화재피해를 입은 콘크리트구조물의 수열온도 추정을 위한 실험적 연구)

  • 권영진
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-56
    • /
    • 2004
  • A fire outbreak in a reinforcement concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So concrete reinforcement structure is damaged partial or whole structure system. Therefore diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. In this study, it was presented data for the accurate diagnosis and selection of repair and reinforcement system for the deteriorated concrete heated highly, various concrete such as standard design compressive strength, fine aggregate and admixture were exposed to a high temperature environment. And fundamental data were measured engineering properties such as explosive spatting, ultrasonic pulse velocity and compressive strength.

Risk Factors of Electrical Fire at the Panelboard and Investigation of Field Conditions (분전반에서의 전기화재 위험요소 및 현장실태조사 분석)

  • Kim, Hyang-Kon;Kim, Dong-Woo;Lee, Ki-Yeon;Choi, Yong-Sung;Choi, Chung-Seog;Choi, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2206-2207
    • /
    • 2008
  • 본 논문에서는 분전반에서의 화재 위험 요소와 화재위험 요소에 대한 현장 실태조사 결과를 분석하였다. 분전반에서의 화재 위험 요소는 크게 전기적 요인, 환경적 요인, 물리적 요인으로 나눌 수 있으며 전기적 요인으로는 단락, 과부하(과전류), 접촉불량, 전류 불평형 등이 있으며 환경적 요인으로는 수분(염분 등), 먼지(분진, 목분, 철분 등), 온도(고온) 등에 의한 절연파괴, 기기 손상, 오동작 등이 있다. 물리적 요인으로는 기계적인 진동이나 충격 등에 의한 전기적 접속부의 이완에 의한 발열 등을 들 수 있다. 이러한 화재 위험 요인에 대하여 현장실태조사를 실시한 결과, 일부 분전반에서 내부에 먼지 등 이물질이 차단기, 전선, 단자대 등의 표면에 부착되어 있음을 확인할 수 있었으며 수분이나 염분 등의 영향으로 전극간 절연물 표면의 열화로 화재가 발생할 가능성이 있다. 또한, 적외선 열화상 분석결과, 일부 차단기 단자에서 국부 발열이 관측되었으며, 부하 분담의 불평형에 의한 발열도 확인되었다. 이러한 위험요인에 의한 화재 예방을 위하여 규정된 전선 굵기의 사용과 적정 체결압력의 확보, 상간 전류 불평형을 줄이기 위한 부하 분담의 조정이 필요하다. 향후, 분전반에서의 전기화재, 감전사고 등 전기재해의 예방을 위하여 지속적이고 체계적인 유지관리는 물론 사고 발생 전에 이상 징후를 사전에 감지하여 조치를 취할 수 있도록 하는 기술의 개발과 현장 적용이 요구된다.

  • PDF

Design Consideration about Large Caliber Piping of Polyethylene Material (폴리에틸렌 소재의 대구경 배관 설계 고찰)

  • Kim, Eung-Soo;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • As the polyethylene of high strength and ductility stabilized chemically has been mass-produced, it is spreading widely as material of industrial piping and water service piping. Recently, High density polyethylene (HDPE) pipe has been used even in water supply system of plant as buried pipe instead of cast iron pipe in domestic, but HDPE pipe has a probability of occurrence of damage if plant design and operating conditions are not considered. As a result of reviewing with respect of system design engineering based on operating conditions and verification test results, the specific design criteria for the use of HDPE piping in fire water supply system need to be established because of the possibility of crack damage due to water hammer.

Fire resistance assessment in construction joint of precast fireproof duct slab (프리캐스트 방식 내화풍도슬래브 시공조인트부의 화재저항성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Se Kwon;Kim, Tae Kyun;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.359-370
    • /
    • 2021
  • Duct slabs, which are used to build ventilation facilities in underground spaces with transverse ventilation system, need to secure fire resistance according to longitudinal and heavy vehicle traffic of tunnels. This study measured the temperature change at the construction joint of the precast fireproof duct slab which integrates fire resistance material and duct slab under the RWS fire scenario. As a result, it was confirmed that if there is no reinforcement of the construction joint, damage will occur in concrete inside the construction joint, leading to damage to the fireproofing layer. On the other hand, when one side of the construction joint was reinforced with fireproofing materials, it showed more than three times the fire resistance performance compared to when there was no reinforcement. At this time, cross-sectional losses of concrete and fireproofing layer were shown in blocks without reinforcement, but no damage was seen in the reinforced blocks.