• Title/Summary/Keyword: 화재억제

Search Result 104, Processing Time 0.018 seconds

The Localization Development for Korean Utility Helicopter's On-Board Inert Gas Generation System (한국형 기동헬기 불활성가스발생장치 국산화 개발)

  • Ahn, Jong-Moo;Lee, Hee-Rang;Kang, Tae-Woo;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.662-669
    • /
    • 2017
  • Military rotary aircraft are heavily exposed to projectile environments due to their mission characteristics, and fires caused by fuel leaks after shooting are linked directly to the loss of human life. To improve the survivability of pilots and crews, the fuel tank in rotary aircraft must have gunfire resistance and anti-explosion characteristics. Gunfire resistance can be satisfied by applying a self-sealing cell to a fuel tank. Anti-explosion can be satisfied by reducing the oxygen concentration in an explosive area and suppressing the generation of combustible fuel vapor by minimizing the evaporation rate of the fuel by heat. A Korean utility helicopter applies anon-board inert gas generation system to meet the anti-explosion requirements for ballistic impact. The generator fills the fuel tank with an inert gas and reduces the oxygen concentration. This paper describes the overall development process of the OBIGGS developed in accordance with the localization process of weapon components. OBIGGS was developed/manufactured through domestic technology, and the performance was found to be equal to or better than that of the existing products through single performance tests and aircraft mounting tests.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.

Growth Environment Characteristics and Decline in Mt. Seunghak's Miscanthus sinensis Community (승학산 참억새군락의 생육환경 특성 및 쇠퇴에 관한 연구)

  • Park, Seul-Gi;Choi, Song-Hyun;Hong, Suk-Hwan;Lee, Sang-Cheol;Yu, Chan-Yeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.14-28
    • /
    • 2017
  • Mt. Seunghak's Miscanthus sinensis community is not only a landscape resource in terms of cultural services within the Ecosystem Services but also a site that is visited by many mountaineers in autumn. As the current Miscanthus sinensis community has been experiencing a rapid decline due to Korean forest succession characteristics, ongoing artificial management is thought to be needed for landscape resource use. The purpose of this study was to determine growth environment characteristics and the cause of the rapid decline of the Miscanthus sinensis community in Mt. Seunghak, which is located inside a large city with a large scale and outstanding accessibility. As the Miscanthus sinensis community is the representative early vegetation that appears temporarily in dry, barren soil, the Miscanthus sinensis community in Korean forest succession tends to be unsustainable. As the current soil on Mt. Seunghak is inappropriately fertile for the Miscanthus sinensis community, other wetland woody plant communities are anticipated to succeed it. If Miscanthus sinensis community maintenance is needed for Miscanthus sinensis landscape scenery, various alternatives apart from overall Miscanthus sinensis community maintenance should be determined for cost-effective management. For example, while many byways toward the inside of the Miscanthus sinensis community have affected the Miscanthus sinensis community growth environment, the installation of wooden fences and ropes has been a control in approach. As a result of this positive effect, many byways toward the inside of Miscanthus sinensis community have been restored naturally. Through viewable range analysis, as good scenery sites on the observatory have a good viewable range on the main trail as well, if these scenery sites are intensively managed, effective Miscanthus sinensis ccommunity management will be done despite maintenance budget cutbacks. This study is expected to be used as a basic material regarding the alternatives for a sustained Miscanthus sinensis community and the possibility of cultivating other growth in poor soils of fallow fields and unused land.