• Title/Summary/Keyword: 화자종속 음성인식알고리즘

Search Result 36, Processing Time 0.025 seconds

A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network (신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구)

  • Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.43-49
    • /
    • 1996
  • This research proposes a system for speaker independent Korean continuous speech recognition with 247 DDD area names using keyword spotting technique. The applied recognition algorithm is the Dynamic Programming Neural Network(DPNN) based on the integration of DP and multi-layer perceptron as model that solves time axis distortion and spectral pattern variation in the speech. To improve performance, we classify word model into keyword model and non-keyword model. We make an experiment on postprocessing procedure for the evaluation of system performance. Experiment results are as follows. The recognition rate of the isolated word is 93.45% in speaker dependent case. The recognition rate of the isolated word is 84.05% in speaker independent case. The recognition rate of simple dialogic sentence in keyword spotting experiment is 77.34% as speaker dependent, and 70.63% as speaker independent.

  • PDF

Improving the Performance of a Speech Recognition System in a Vehicle by Distinguishing Male/Female Voice (성별 구별방법에 의한 자동차 내 음성 인식 성능 향상)

  • Yang, Jin-Woo;Kim, Sun-Hyeop
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.12
    • /
    • pp.1174-1182
    • /
    • 2000
  • 본 논문은 주행중인 자동차 환경에서 운전자의 안전성 및 편의성의 동시 확보를 위하여, 보조적인 스위치 조작 없이 상시 음성의 입, 출력이 가능한 시스템을 제안하였다. 이대 잡음에 강인한 threshold 값을 구하기 위하여, 1.5초마다 기준 에너지와 영 교차율을 변경하였으며 대역 통과 여과기를 이용하여 1차, 2차로 나누어 실시간 상태에서 자동으로, 정확하게 끝점 검출을 처리하였다. 또한 남성, 여성을 피치검출로 구분하여 모델을 선택하게 하였고, 주행중인 자동차 속도에 따라 가장 적합한 모델을 사용하기 위하여 Idle-40km, 40-80km, 80-100km로 구분하여 남성, 여성 모델을 각각 구분하여 인식할 수 있게 하였다. 그리고, 음성의 특징 벡터와 인식 알고리즘은 PLP 13차와 OSDP(one-Stage Dynamic Programming)을 사용하였다. 본 실험은 서울시내 도로 및 내부 순환도로에서 각각 속도별로 구분하여 화자독립 인식 실험을 한 결과 40-80km 상태에서 남자는 96.8%, 여자는 95.1%, 80-100km 상태에서는 남자 91.6%, 여자는 90.6%의 인식결과를 얻을 수 있었고, 화자종속 인식실험 결과 40-80km 상태에서 남자는 98%, 여자는 96%, 80-100km 상태에서는 남자는 96%, 여자는 94%의 높은 인식률을 얻었으므로, system의 유효성을 입증하였다.

  • PDF

A Study on the Recognition of the Connected Digits Using CorrectIve Trammg WIth HMM and Post Processing (HMM의 교정 학습과 후처리를 이용한 연결 숫자음 인식에 관한 연구)

  • 우인봉
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.161-165
    • /
    • 1994
  • HMM은 좋은 결과를 보이면서 현재 음성 인식 분야에서 널리 사용되는 알고리즘이다. 그러나, 이 HMM의 학습방법인 maimum like-ihood estimation 은 인식률을 극대화하는 모델의 파라메터 값을 생성하지 못하는 단점이 있다. 이러한 문제점을 보와하기 위하여 연결어 인식 알고리즘인 Segmental K-means의 학습과정에 교정 학습법을 도입하여 모델 파라메터 값을 재조정 해 준다. 한국어 연속 숫자음은 영어 연속 숫자음과 달리 연음 현상의 영향을 많이 받는다. Level building 과정에서 연음에 의한 오류를 감소시키기 위해 연음에 의해 발생할 수 있는 단어를 별도의 모델로 추가했다. 이렇게 추가된 단어 모델들에 대한 몇가지 규픽을 인식 결과에 적용하여 출력을 다시 조정한다. 본 시스템은 TMS320C30 프로세서 내장한 DSP 보드와 IBM PC 사엥서 구현되었고, 표준 패턴은 실험실 잡음 환경에서 남성화자 3명을 대상으로 작성하였다. 인식 결과 21종 전화번호 252개 데이터에 대하여 화자 종속으로 92.1% 인식률을 나타내었다.

  • PDF

A Study on Construction of Acoustical Phoneme Models Using Hidden Markov Network (Hidden Markov Network를 이용한 음향학적 음소모델 작성에 관한 검토)

  • Oh Se-Jin;Lim Young-Choon;Hwang Cheol-Jun;Kim Bum-Koog;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.29-32
    • /
    • 2000
  • 본 논문에서는 음성인식 시스템의 음향모델 개선을 위한 기초적 연구로서, 문맥적인 요소를 필요로 하는 SSS(Successive State Splitting)와 필요로 하지 않는 SSS-free 알고리즘을 이용한 HMnet(Hidden Markov Network) 음향모델 작성방법에 대해 검토하고 작성한 음향모델을 한국어에 적용하여 그 유효성을 확인하였다. HMnet을 이용한 음소모델의 작성방법은 전체 학습 데이터에 대해서 각각 2개의 상태를 가지는 초기 모델을 작성한 후, 이를 시간과 문맥방향으로의 최대 분포를 가지는 상태를 재분할한 후 임의의 상태수가 될 때까지 상태분할을 계속적으로 수행케 하여 각 음소모델을 작성하게 된다. 작성한 HMnet 음향모델의 유효성을 확인하기 위해 ETRI 445 단어의 3인에 대한 화자종속 음소인식 실험을 수행하였다. 인식실험 결과, SSS 알고리즘을 이용한 화자종속실험의 경우 상태수 520에서 평균 $62.8\%$의 인식률을, SSS-free 알고리즘의 경우 상태수 420에서 평균 $64.2\%$의 인식률을 얻었다. 이 결과는 HMM을 이용한 경우(약$43.4\%$)보다 $20\%$이상의 인식률 향상을 보여 이 알고리즘의 유효성을 확인할 수 있었다. SSS와 SSS-free를 비교한 경우, SSS-free가 SSS보다 낮은 상태수에서 평균 $1.4\% 향상된 인식률을 보였다.

  • PDF

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 이정기;남동선;양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2000
  • Is this paper, we studied on the automatic speech control system in real-time windows environment using voice recognition. The applied reference pattern is the variable DMS model which is proposed to fasten execution speed and the one-stage DP algorithm using this model is used for recognition algorithm. The recognition vocabulary set is composed of control command words which are frequently used in windows environment. In this paper, an automatic speech period detection algorithm which is for on-line voice processing in windows environment is implemented. The variable DMS model which applies variable number of section in consideration of duration of the input signal is proposed. Sometimes, unnecessary recognition target word are generated. therefore model is reconstructed in on-line to handle this efficiently. The Perceptual Linear Predictive analysis method which generate feature vector from extracted feature of voice is applied. According to the experiment result, but recognition speech is fastened in the proposed model because of small loud of calculation. The multi-speaker-independent recognition rate and the multi-speaker-dependent recognition rate is 99.08% and 99.39% respectively. In the noisy environment the recognition rate is 96.25%.

  • PDF

Design and Implementation of a Real-Time Lipreading System Using PCA & HMM (PCA와 HMM을 이용한 실시간 립리딩 시스템의 설계 및 구현)

  • Lee chi-geun;Lee eun-suk;Jung sung-tae;Lee sang-seol
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1597-1609
    • /
    • 2004
  • A lot of lipreading system has been proposed to compensate the rate of speech recognition dropped in a noisy environment. Previous lipreading systems work on some specific conditions such as artificial lighting and predefined background color. In this paper, we propose a real-time lipreading system which allows the motion of a speaker and relaxes the restriction on the condition for color and lighting. The proposed system extracts face and lip region from input video sequence captured with a common PC camera and essential visual information in real-time. It recognizes utterance words by using the visual information in real-time. It uses the hue histogram model to extract face and lip region. It uses mean shift algorithm to track the face of a moving speaker. It uses PCA(Principal Component Analysis) to extract the visual information for learning and testing. Also, it uses HMM(Hidden Markov Model) as a recognition algorithm. The experimental results show that our system could get the recognition rate of 90% in case of speaker dependent lipreading and increase the rate of speech recognition up to 40~85% according to the noise level when it is combined with audio speech recognition.

  • PDF

A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System (임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구)

  • Kim, Joeng-Hoon;Kwon, Soon-Ryang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The recent fingerprint recognition system has unstable factors, such as copy of fingerprint patterns and hacking of fingerprint feature point, which mali cause significant system error. Thus, in this research, we used the fingerprint as the main recognition device and then implemented the multi-biometric recognition system in serial using the speech recognition which has been widely used recently. As a multi-biometric recognition system, once the speech is successfully recognized, the fingerprint recognition process is run. In addition, speaker-dependent DTW(Dynamic Time Warping) algorithm is used among existing speech recognition algorithms (VQ, DTW, HMM, NN) for effective real-time process while KSOM (Kohonen Self-Organizing feature Map) algorithm, which is the artificial intelligence method, is applied for the fingerprint recognition system because of its calculation amount. The experiment of multi-biometric recognition system implemented in this research showed 2 to $7\%$ lower FRR (False Rejection Ratio) than single recognition systems using each fingerprints or voice, but zero FAR (False Acceptance Ratio), which is the most important factor in the recognition system. Moreover, there is almost no difference in the recognition time(average 1.5 seconds) comparing with other existing single biometric recognition systems; therefore, it is proved that the multi-biometric recognition system implemented is more efficient security system than single recognition systems based on various experiments.

Fast Algorithm for Recognition of Korean Isolated Words (한국어 고립단어인식을 위한 고속 알고리즘)

  • 남명우;박규홍;정상국;노승용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.50-55
    • /
    • 2001
  • This paper presents a korean isolated words recognition algorithm which used new endpoint detection method, auditory model, 2D-DCT and new distance measure. Advantages of the proposed algorithm are simple hardware construction and fast recognition time than conventional algorithms. For comparison with conventional algorithm, we used DTW method. At result, we got similar recognition rate for speaker dependent korean isolated words and better it for speaker independent korean isolated words. And recognition time of proposed algorithm was 200 times faster than DTW algorithm. Proposed algorithm had a good result in noise environments too.

  • PDF

Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models (은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.

A Study on Korean Phoneme Classification using Recursive Least-Square Algorithm (Recursive Least-Square 알고리즘을 이용한 한국어 음소분류에 관한 연구)

  • Kim, Hoe-Rin;Lee, Hwang-Su;Un, Jong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.60-67
    • /
    • 1987
  • In this paper, a phoneme classification method for Korean speech recognition has been proposed and its performance has been studied. The phoneme classification has been done based on the phonemic features extracted by the prewindowed recursive least-square (PRLS) algorithm that is a kind of adaptive filter algorithms. Applying the PRLS algorithm to input speech signal, precise detection of phoneme boundaries has been made, Reference patterns of Korean phonemes have been generated by the ordinery vector quantization (VQ) of feature vectors obtained manualy from prototype regions of each phoneme. In order to obtain the performance of the proposed phoneme classification method, the method has been tested using spoken names of seven Korean cities which have eleven different consonants and eight different vowels. In the speaker-dependent phoneme classification, the accuracy is about $85\%$ considering simple phonemic rules of Korean language, while the accuracy of the speaker-independent case is far less than that of the speaker-dependent case.

  • PDF