본 논문에서는 입력된 음성이 남성화자인지 여성화자인지를 구분하는 FFT 스펙트럼 및 LPC 켑스트럼 입력에 의한 성별인식 알고리즘을 제안한다. 본 논문에서는 특히 남성화자와 여성화자의 특징벡터를 비교 분석하여, 이러한 남녀의 음향학적인 특징벡터의 차이점을 이용하여 신경회로망에 의한 성별 인식에 대한 실험을 수행한다. 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용한 경우에, 남성화자 및 여성화자에 대해서 양호한 남녀 성별인식률이 구해졌다.
본 논문에서는 잡음 환경 하에서 남녀 성별인식이 가능한 신경회로망에 의한 화자종속 음성인식 알고리즘을 제안한다. 본 논문에서 제안한 음성인식 알고리즘은 남성화자 및 여성화자를 인식하기 위하여 LPC 켑스트럼 계수를 사용하여 신경회로망에 의하여 학습된다. 본 실험에서는 백색잡음 및 자동차잡음에 대하여 신경회로망의 네크워크에 대한 인식결과를 나타낸다. 인식실험의 결과로부터 백색잡음에 대해서는 최대 96% 이상의 인식률, 자동차잡음에 대해서는 최대 88% 이상의 인식률을 구하였다.
본 논문에서는 음성인식 알고리즘에 매우 중요한 정보를 제공하는 화자의 성별인식을 위하여 신경회로망을 사용하여 잡음 환경 하에서 남성음성 및 여성음성의 화자를 식별하는 성별인식 알고리즘을 제안한다. 본 논문에서 제안하는 신경회로망은 MFCC의 계수를 사용하여 음성의 각 구간에서 남성음성 및 여성음성의 화자를 인식할 수 있는 알고리즘이다. 실험결과로부터 백색잡음이 중첩된 잡음환경 하에서 음성신호의 MFCC의 특징벡터를 사용함으로써 남성음성 및 여성음성의 화자에 대해서 양호한 성별인식 결과가 구해졌다.
본 논문에서는 켑스트럼 계수의 변화에 따른 남성화자와 여성화자의 음향학적인 특징벡터를 비교하여 분석하는 기초적인 연구를 수행한다. 특히 FFT 켑스트럼 및 LPC 켑스트럼에 대한 남녀의 음향학적인 특징벡터의 차이점을 나타낸다. 향후 이러한 차이점을 기초로 하여 신경회로망 등에 의한 성별 인식에 대한 연구를 수행함으로써 남성화자 및 여성화자를 분리할 수 있는 근거를 마련하는 기초연구이다.
음성인식에서의 인식률 향상을 위한 노력의 일환으로서, 본 논문에서는 성별을 구분하지 않는 일반적 화자독립 음성인식과 성별에 따른 음성인식의 성능을 비교하는 연구를 수행하였다. 실험을 위해 남녀 각 20명의 화자로 하여금 각각 300단어를 발성하게 하고, 그 음성 데이터를 여성/남성/혼성A/혼성B의 네 그룹으로 나누었다. 우선, 성별 음성인식에 대한 근거의 타당성을 파악하기 위하여 음성 신호의 주파수 분석 및 MFCC 특징벡터들의 성별 차이를 조사하였다. 그 결과, 성별 음성인식의 동기를 뒷받침할 정도의 두드러진 성별 차이가 확인되었다. 음성인식을 수행한 결과, 성을 구분하지 않는 일반적인 화자독립의 경우에 비해 성별 음성인식에서의 오류율이 절반 이하로 떨어지는 것으로 나타났다. 이로부터, 성 인식과 성별 음성인식을 계층적으로 수행함으로써 화자독립의 인식률을 높일 수 있을 것으로 사료된다.
본 논문에서는 남성화자 혹은 여성화자인지를 구분하는 성별인식 알고리즘을 제안한다. 본 논문에서는 남성화자와 여성화자의 특징벡터를 분석하며, 이러한 남녀의 특징벡터를 이용하여 신경회로망에 의한 제안한 성별인식에 대한 인식실험을 수행한다. 신경회로망의 입력신호로 사용한 특징벡터로는 10차의 LPC 켑스트럼 계수, 12차의 LPC 켑스트럼 계수, 12차의 FFT 켑스트럼 및 1차의 RMS, 12차의 LPC 켑스트럼 및 8차의 FFT 스펙트럼들이다. 본 실험에서는 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용하여 20-20-2의 네트워크에 의하여 신경회로망이 학습되었다. 실험결과, 남성화자에 대하여 학습 시에는 평균 99.8%, 여성화자에 대해서는 평균 96.5%의 성별인식률이 구해졌다.
본 논문에서는 백색잡음 및 자동차잡음 환경 하에서 남녀 성별인식이 가능한 신경회로망에 의한 화자종속 음성인식 알고리즘을 제안한다. 본 논문에서 제안한 음성인식 알고리즘은 남성화자 및 여성화자를 인식하기 위하여 LPC 켑스트럼 계수를 사용하여 신경회로망에 의하여 학습된다. 본 실험에서는 백색잡음 및 자동차잡음에 대하여 총 6개의 신경회로망의 네크워크에 대한 인식결과를 나타낸다. 인식실험의 결과로부터 백색잡음에 대해서는 최대 96% 이상의 인식률, 자동차잡음에 대해서는 최대 88% 이상의 인식률을 구하였다. 마지막으로 본 실험에서는 제안하는 음성인식 알고리즘이 배경잡음 환경 하에서의 기존의 음성인식 알고리즘과 비교하여 본 방식의 알고리즘이 유효하다는 것을 실험으로 확인한다.
본 논문에서는 음성 데이터에서 특징벡터를 추출한 후 이를 분석하여 화자의 성별을 분류하는 연구를 진행하였다. 본 연구는 고객이 전화 등 음성을 통해 서비스를 요청할 시 요청한 고객의 성별을 자동으로 인식함으로써 직접 듣고 분류하지 않아도 되는 편의성을 제공한다. 학습된 모델을 활용하여 성별을 분류한 후 성별마다 요청 빈도가 높은 서비스를 분석하여 고객 맞춤형 추천 서비스를 제공하는 데에 유용하게 활용할 수 있다. 본 연구는 공백을 제거한 남성 및 여성의 음성 데이터를 기반으로 각각의 데이터에서 MFCC를 통해 특징벡터를 추출한 후 SVM 모델을 활용하여 기계학습을 진행하였다. 학습한 모델을 활용하여 음성 데이터의 성별을 분류한 결과 94%의 성별인식률이 도출되었다.
인간의 감정을 인식하는 기술은 인간-로봇 상호작용 분야의 중요한 연구주제 중 하나이다. 특히, 화자독립 감정인식은 음성감정인식의 상용화를 위해 꼭 필요한 중요한 이슈이다. 일반적으로, 화자독립 감정인식 시스템은 화자종속 시스템과 비교하여 감정특징 값들의 화자 그리고 성별에 따른 변화로 인하여 낮은 인식률을 보인다. 따라서 본 논문에서는 신뢰도 평가방법을 이용한 감정인식결과의 거절 방법을 사용하여 화자독립 감정인식 시스템을 일관되고 정확하게 구현할 수 있는 방법을 제시한다. 또한, 제안된 방법과 기존 방법의 비교를 통하여 제안된 방법의 효율성 및 가능성을 검증한다.
본 논문에서는 음성의 발화 속도와 휴지 구간의 길이 그리고 화자의 연령과 성별에 기반한 방언 분류 접근 방법을 제안한다. 방언 분류는 음성 분석을 위한 중요한 기술 중 하나이다. 예를 들어 정확한 방언 분류 모델은 화자 인식 또는 음성 인식의 성능을 향상시킬 수 있는 잠재력을 가질 수 있다. 선행 연구에 따르면, Mel-Frequency Cepstral Coefficients(MFCC) 특징을 사용한 딥러닝 기반의 연구가 주류를 이루었다. 우리는 지역 간의 음향적 차이에 주목하여 그 차이를 바탕으로 추출한 특징을 사용하여 방언 분류를 진행하였다. 본 논문에서는 음성의 발화 속도, 휴지 구간의 길이 특성을 추출하여 사용하며 이와 함께 화자의 연령과 성별과 같은 메타데이터를 추가로 사용하는 새로운 접근 방법을 제안한다. 실험 결과 제안된 접근 방법이 더 높은 정확도를 보이는 것을 확인하였으며 특히 음성의 발화 속도 특성을 사용하는 것이 기존 MFCC만을 사용하는 방법보다 향상된 성능을 보여준다는 것을 확인할 수 있었다. MFCC 특성만을 사용한 방법과 비교했을 때 본 논문에서 제안한 특성들을 모두 사용하였을 때의 정확도는 91.02%에서 97.02%로 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.