• 제목/요약/키워드: 화자의 성별

검색결과 32건 처리시간 0.031초

LPC 켑스트럼 및 FFT 스펙트럼에 의한 성별 인식 알고리즘

  • 최재승;정병구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.63-65
    • /
    • 2012
  • 본 논문에서는 입력된 음성이 남성화자인지 여성화자인지를 구분하는 FFT 스펙트럼 및 LPC 켑스트럼 입력에 의한 성별인식 알고리즘을 제안한다. 본 논문에서는 특히 남성화자와 여성화자의 특징벡터를 비교 분석하여, 이러한 남녀의 음향학적인 특징벡터의 차이점을 이용하여 신경회로망에 의한 성별 인식에 대한 실험을 수행한다. 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용한 경우에, 남성화자 및 여성화자에 대해서 양호한 남녀 성별인식률이 구해졌다.

  • PDF

배경잡음 하에서의 신경회로망에 의한 남성화자 및 여성화자의 성별인식 알고리즘

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.515-517
    • /
    • 2013
  • 본 논문에서는 잡음 환경 하에서 남녀 성별인식이 가능한 신경회로망에 의한 화자종속 음성인식 알고리즘을 제안한다. 본 논문에서 제안한 음성인식 알고리즘은 남성화자 및 여성화자를 인식하기 위하여 LPC 켑스트럼 계수를 사용하여 신경회로망에 의하여 학습된다. 본 실험에서는 백색잡음 및 자동차잡음에 대하여 신경회로망의 네크워크에 대한 인식결과를 나타낸다. 인식실험의 결과로부터 백색잡음에 대해서는 최대 96% 이상의 인식률, 자동차잡음에 대해서는 최대 88% 이상의 인식률을 구하였다.

  • PDF

음성인식 시스템의 성능 향상을 위한 잡음음성의 남성 및 여성화자의 음성식별 (Speech Identification of Male and Female Speakers in Noisy Speech for Improving Performance of Speech Recognition System)

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.619-620
    • /
    • 2017
  • 본 논문에서는 음성인식 알고리즘에 매우 중요한 정보를 제공하는 화자의 성별인식을 위하여 신경회로망을 사용하여 잡음 환경 하에서 남성음성 및 여성음성의 화자를 식별하는 성별인식 알고리즘을 제안한다. 본 논문에서 제안하는 신경회로망은 MFCC의 계수를 사용하여 음성의 각 구간에서 남성음성 및 여성음성의 화자를 인식할 수 있는 알고리즘이다. 실험결과로부터 백색잡음이 중첩된 잡음환경 하에서 음성신호의 MFCC의 특징벡터를 사용함으로써 남성음성 및 여성음성의 화자에 대해서 양호한 성별인식 결과가 구해졌다.

  • PDF

남녀의 음향학적 특징벡터의 비교 분석에 관한 연구

  • 최재승;정병구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.887-890
    • /
    • 2012
  • 본 논문에서는 켑스트럼 계수의 변화에 따른 남성화자와 여성화자의 음향학적인 특징벡터를 비교하여 분석하는 기초적인 연구를 수행한다. 특히 FFT 켑스트럼 및 LPC 켑스트럼에 대한 남녀의 음향학적인 특징벡터의 차이점을 나타낸다. 향후 이러한 차이점을 기초로 하여 신경회로망 등에 의한 성별 인식에 대한 연구를 수행함으로써 남성화자 및 여성화자를 분리할 수 있는 근거를 마련하는 기초연구이다.

  • PDF

남성과 여성의 음성 특징 비교 및 성별 음성인식에 의한 인식 성능의 향상 (Comparison of Male/Female Speech Features and Improvement of Recognition Performance by Gender-Specific Speech Recognition)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.568-574
    • /
    • 2010
  • 음성인식에서의 인식률 향상을 위한 노력의 일환으로서, 본 논문에서는 성별을 구분하지 않는 일반적 화자독립 음성인식과 성별에 따른 음성인식의 성능을 비교하는 연구를 수행하였다. 실험을 위해 남녀 각 20명의 화자로 하여금 각각 300단어를 발성하게 하고, 그 음성 데이터를 여성/남성/혼성A/혼성B의 네 그룹으로 나누었다. 우선, 성별 음성인식에 대한 근거의 타당성을 파악하기 위하여 음성 신호의 주파수 분석 및 MFCC 특징벡터들의 성별 차이를 조사하였다. 그 결과, 성별 음성인식의 동기를 뒷받침할 정도의 두드러진 성별 차이가 확인되었다. 음성인식을 수행한 결과, 성을 구분하지 않는 일반적인 화자독립의 경우에 비해 성별 음성인식에서의 오류율이 절반 이하로 떨어지는 것으로 나타났다. 이로부터, 성 인식과 성별 음성인식을 계층적으로 수행함으로써 화자독립의 인식률을 높일 수 있을 것으로 사료된다.

남녀 성별인식을 위한 음성 특징벡터의 비교 (Comparison of Characteristic Vector of Speech for Gender Recognition of Male and Female)

  • 정병구;최재승
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1370-1376
    • /
    • 2012
  • 본 논문에서는 남성화자 혹은 여성화자인지를 구분하는 성별인식 알고리즘을 제안한다. 본 논문에서는 남성화자와 여성화자의 특징벡터를 분석하며, 이러한 남녀의 특징벡터를 이용하여 신경회로망에 의한 제안한 성별인식에 대한 인식실험을 수행한다. 신경회로망의 입력신호로 사용한 특징벡터로는 10차의 LPC 켑스트럼 계수, 12차의 LPC 켑스트럼 계수, 12차의 FFT 켑스트럼 및 1차의 RMS, 12차의 LPC 켑스트럼 및 8차의 FFT 스펙트럼들이다. 본 실험에서는 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용하여 20-20-2의 네트워크에 의하여 신경회로망이 학습되었다. 실험결과, 남성화자에 대하여 학습 시에는 평균 99.8%, 여성화자에 대해서는 평균 96.5%의 성별인식률이 구해졌다.

남녀성별 분류를 위한 화자종속 음성인식 알고리즘 (Speaker-dependent Speech Recognition Algorithm for Male and Female Classification)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.775-780
    • /
    • 2013
  • 본 논문에서는 백색잡음 및 자동차잡음 환경 하에서 남녀 성별인식이 가능한 신경회로망에 의한 화자종속 음성인식 알고리즘을 제안한다. 본 논문에서 제안한 음성인식 알고리즘은 남성화자 및 여성화자를 인식하기 위하여 LPC 켑스트럼 계수를 사용하여 신경회로망에 의하여 학습된다. 본 실험에서는 백색잡음 및 자동차잡음에 대하여 총 6개의 신경회로망의 네크워크에 대한 인식결과를 나타낸다. 인식실험의 결과로부터 백색잡음에 대해서는 최대 96% 이상의 인식률, 자동차잡음에 대해서는 최대 88% 이상의 인식률을 구하였다. 마지막으로 본 실험에서는 제안하는 음성인식 알고리즘이 배경잡음 환경 하에서의 기존의 음성인식 알고리즘과 비교하여 본 방식의 알고리즘이 유효하다는 것을 실험으로 확인한다.

Gender Classification of Speakers Using SVM

  • Han, Sun-Hee;Cho, Kyu-Cheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.59-66
    • /
    • 2022
  • 본 논문에서는 음성 데이터에서 특징벡터를 추출한 후 이를 분석하여 화자의 성별을 분류하는 연구를 진행하였다. 본 연구는 고객이 전화 등 음성을 통해 서비스를 요청할 시 요청한 고객의 성별을 자동으로 인식함으로써 직접 듣고 분류하지 않아도 되는 편의성을 제공한다. 학습된 모델을 활용하여 성별을 분류한 후 성별마다 요청 빈도가 높은 서비스를 분석하여 고객 맞춤형 추천 서비스를 제공하는 데에 유용하게 활용할 수 있다. 본 연구는 공백을 제거한 남성 및 여성의 음성 데이터를 기반으로 각각의 데이터에서 MFCC를 통해 특징벡터를 추출한 후 SVM 모델을 활용하여 기계학습을 진행하였다. 학습한 모델을 활용하여 음성 데이터의 성별을 분류한 결과 94%의 성별인식률이 도출되었다.

감정 상호작용 로봇을 위한 신뢰도 평가를 이용한 화자독립 감정인식 (Speech Emotion Recognition Using Confidence Level for Emotional Interaction Robot)

  • 김은호
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.755-759
    • /
    • 2009
  • 인간의 감정을 인식하는 기술은 인간-로봇 상호작용 분야의 중요한 연구주제 중 하나이다. 특히, 화자독립 감정인식은 음성감정인식의 상용화를 위해 꼭 필요한 중요한 이슈이다. 일반적으로, 화자독립 감정인식 시스템은 화자종속 시스템과 비교하여 감정특징 값들의 화자 그리고 성별에 따른 변화로 인하여 낮은 인식률을 보인다. 따라서 본 논문에서는 신뢰도 평가방법을 이용한 감정인식결과의 거절 방법을 사용하여 화자독립 감정인식 시스템을 일관되고 정확하게 구현할 수 있는 방법을 제시한다. 또한, 제안된 방법과 기존 방법의 비교를 통하여 제안된 방법의 효율성 및 가능성을 검증한다.

발화 속도와 휴지 구간 길이를 사용한 방언 분류 (Dialect classification based on the speed and the pause of speech utterances)

  • 나종환;이보원
    • 말소리와 음성과학
    • /
    • 제15권2호
    • /
    • pp.43-51
    • /
    • 2023
  • 본 논문에서는 음성의 발화 속도와 휴지 구간의 길이 그리고 화자의 연령과 성별에 기반한 방언 분류 접근 방법을 제안한다. 방언 분류는 음성 분석을 위한 중요한 기술 중 하나이다. 예를 들어 정확한 방언 분류 모델은 화자 인식 또는 음성 인식의 성능을 향상시킬 수 있는 잠재력을 가질 수 있다. 선행 연구에 따르면, Mel-Frequency Cepstral Coefficients(MFCC) 특징을 사용한 딥러닝 기반의 연구가 주류를 이루었다. 우리는 지역 간의 음향적 차이에 주목하여 그 차이를 바탕으로 추출한 특징을 사용하여 방언 분류를 진행하였다. 본 논문에서는 음성의 발화 속도, 휴지 구간의 길이 특성을 추출하여 사용하며 이와 함께 화자의 연령과 성별과 같은 메타데이터를 추가로 사용하는 새로운 접근 방법을 제안한다. 실험 결과 제안된 접근 방법이 더 높은 정확도를 보이는 것을 확인하였으며 특히 음성의 발화 속도 특성을 사용하는 것이 기존 MFCC만을 사용하는 방법보다 향상된 성능을 보여준다는 것을 확인할 수 있었다. MFCC 특성만을 사용한 방법과 비교했을 때 본 논문에서 제안한 특성들을 모두 사용하였을 때의 정확도는 91.02%에서 97.02%로 향상되었다.