• Title/Summary/Keyword: 화염계수모형

Search Result 3, Processing Time 0.022 seconds

A Study on the Influence of Turbulent Intensity on DOHC Engine Performance (DOHC 가솔린기관의 연소실 난류특성이 기관성능에 미치는 영향에 관한 연구)

  • Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.12-23
    • /
    • 1994
  • In order to investigate the effect of turbulent intensity on combustion characteristics, new flame factor model was developed. The principal study is the evaluation of interaction of swirl, tumble and unstrutural component of flow characteristics and correlation between turbulent intensity and flame factor. Computational and experimental study has been, performed such as quasi-dimensional cycle simulation, three dimensional flow analysis, engine performance test and diagnostic simulation. From these studies, it was found that flame factor was a function of engine speed and turbulent intensity.

  • PDF

An Experimental Study on the Combustion Instability Evaluation by Using DMD (DMD 기법을 적용한 모형 가스터빈의 연소불안정성 평가에 관한 실험적 연구)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • Combustion instability of gas turbine is performed by adopting dynamic mode decomposition (DMD). The unstable frequencies are calculated and compared with FFT results. The damping coefficient derived from the DMD technique and FFT results were compared and analyzed. OH radical is measured by experimental work and fluctuation field is extracted and FTF was calculated at various points with DMD. The gains of FTF are changed depending on the extraction position of the heat release fluctuation field.

  • PDF

A Study on the Improvment of Engine Performance Simulation Using Multi-Length-Scale Model and MOC (특성곡선법과 다중길이 척도법을 이용한 가솔린 기관의 기관성능시뮬레이션 개선에 관한 연구)

  • 김철수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.605-616
    • /
    • 2001
  • Generally, there are two methods in researching internal combustion engines. One is by experimental research and the other is by computer simulation. The experimental research has many merits that researchers can get data for engine performance, but it has also some demerit of cost and time. If there is an engine simulation code with accuracy for the solution, it is very convenient to predict the performance and optimum design value of the engine. In this study, engine performance simulation program has been improved to predict the transient variation of properties of gas in cylinder, intake and exhaust manifolds, There total program code was developed to calculate the pressure, flame factor and turbulent intensity, As a result of present study, the authors could predicted the in-cylinder pressure, intake manifold pressure and the engine performance in various conditions. The authors also could easily prepare the tool if optimum design of manifold and in-cylinder geometry.

  • PDF