• Title/Summary/Keyword: 화면 검사 장비

Search Result 14, Processing Time 0.018 seconds

Automatic Noncontact Ultrasonic Inspection Technique (비접촉식 초음파탐상방법 자동화 기술)

  • Kim, Y.G.;Ahn, B.Y.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.25-31
    • /
    • 1994
  • A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation, it has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  • PDF

Development of MRI Simulator Early Diagnosis Program for Self Learning (자가 학습을 위한 MRI Simulator 초기 검사 프로그램 개발)

  • Jeong, Cheon-Soo;Kim, Chong-Yeal
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.403-410
    • /
    • 2015
  • Since 1970, MRI has greatly been developing in terms of strength of magnetic field, the number of receipt channels, and short time of examination. With the development of digital systems and wireless network, hospitals have also acquired, saved, and managed digital images taken by various kinds of medical imaging equipment. However, domestic universities fail to provide practice training course independently thanks to expensive practice equipment and high maintenance cost, and rely on clinical training. Therefore, this study developed a MR patient diagnosis program based on Windows PC to help out students before their working in clinical filed. The designed Relational Database of MRI Simulator is made up of seven tables according to functions and data characteristics. Regarding the designed patient information, each stepwise function was classified by the patient registration method in clinical field. In addition, on the assumption of the basic information for diagnosis, each setting and content were classified. The menu by execution step was arrayed on the left side for easy view. For patient registration, a patient's name, gender, unique ID, birth date, weight, and other types of basic information were entered, and the patient's posture and diagnosis direction were set up. In addition, the body regions for diagnosis and Pulse Sequence were listed for selection. Also, Protocol name and other additional factors were allowed to be entered. The final window was designed to check diagnosis images, patient information, and diagnosis conditions. By learning how to enter patient information and change diagnosis conditions in this program, users will be able to understand more theories and terms learned in practice and thereby to shorten their learning time in actual clinical work.

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography(VCUG) (영.유아의 배뇨성 방광-요도 조영술 및 방사선 공기 주입 정복술시 피폭선량 경감을 위한 fluorograb의 유용성)

  • Kim, Sang-Tae;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.385-390
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography (VCUG) (영아/유아의 공기 주입 정복술 및 방사선 배뇨성 방광요도 조영술시 피폭 선량 경감을 위한 FluroGrab의 유용성)

  • Kim, Sang-Tae;Choi, Ji Won;Han, Tae-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1167-1172
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

  • PDF