• Title/Summary/Keyword: 화력운용분석모델

Search Result 5, Processing Time 0.02 seconds

Operational Effectiveness Analysis of Field Artillery Ammunition Support Vehicle for K-55 Self-Propelled Artillery Using Simulation (시뮬레이션을 이용한 K-55자주포용 탄약운반장갑차 운용효과 분석)

  • Jung, Chi-Young;Lee, Jae-Moon;Lee, Jae-Yeong;Park, Young-Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • Korea army is operating K-10 FAASV (Field Artillery Ammunition Support Vehicle) for K-9 SP (Self-Propelled artillery) and examining employment of FAASV for K-55 SP. At present, the FAASV for K-55 SP has been developed as a prototype. To decide the employment of this FAASV for K-55 SP, previous research for operational effectiveness of this equipment is needed. Therefore in this paper, we presented the result of the operational effectiveness of the FAASV for K-55 SP using a wargame model, FEAM (Fire Execution Analytic Model) which is used to analyze formation, weapon system and operation in army artillery field. Based on the result of the FEAM simulation, we introduced the operational effectiveness of FAASV for K-55 SP, which is able to be applied to decide whether employ FAASV for K-55 SP or not.

Modeling and Analysis for Efficient Joint Combat Fire Operation of Army Artillery and Army Aviation (효율적인 육군항공과 포병자산의 통합화력 운용방안 판단을 위한 모델링 방법론 및 분석)

  • Lim, Jong-Won;Kwon, Hyog-Lae;Lee, Tae-Eog
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2014
  • Most combat simulation models, including Korean Army's combat models for simulation analysis, have too much limitations to be used for analysis of complex combats like joint combat fires. We analyze requirements for modeling and simulation of Fire-Eagle, which is a joint combat fire model of ground combat fires and army aviation. We then propose a simulation model for Fire Eagle and derive operational strategies for improving the joint combat fire. To do these, we analyze effectiveness of specific operational plans and scenarios by using the simulation model. We demonstrate ways of developing efficient and effective operational plans from the simulation experimental results.

An Analysis of the Operational Effectiveness of Target Acquisition Radar (포병 표적탐지 레이더 운용의 계량적 효과 분석)

  • Kang, Shin-Sung;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • In the future warfare, the importance of the counter-fire operation is increasing. The counter-fire operation is divided into offensive counter-fire operation and defensive counter-fire operation. Reviewing the researches done so far, the detection asset of offensive counter-fire operation called UAV(Unmanned Aerial Vehicle) and its operational effectiveness analysis is continually progressing. However, the analysis of the detection asset of defensive counterfire called Target Acquisition Radar(TAR) and its quantitative operational effectiveness are not studied yet. Therefore, in this paper, we studied operational effectiveness of TAR using C2 Theory & MANA Simulation model, and showed clear quantitative analysis results by comparing both cases of using TAR and not using TAR.

Comparison of the $SO_2$ Removal Efficiency by Mixing Enhancement Shape (혼합 촉진 장치의 형상에 따른 탈황효율 비교)

  • Chung, Jin-Do;Kim, Jang-Woo;Bae, Young-Peel
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The aim of this study is to research applicable possibility of DSI (Dry Sorbent Injection) technique in $SO_2$ removal process using lab-scale facility based on 500MW in capacity coal-fired thermal power plant operated by South Korea N. Power Co., Ltd. To increase the $SO_2$ removal efficiency, it is considered the mixing enhancement as different shapes called lobed-plate and stepplate tested ultimately for optimum shape. Also it tested to analysis $SO_2$ removal efficiency by numbers of injection holes. At experimental it showed the $SO_2$ removal efficiency is higher using mixing enhancement than not installed mixing enhancement and case on the step-plate was shown the most $SO_2$ removal efficiency. Also, $SO_2$ removal efficiency was higher recording which will increase the injection holes case on not installed mixing enhancement. But, the $SO_2$ removal efficiency was higher 4 injection holes case on installed mixing enhancement.

A Study on the Methodology for Combat Experimental Testing of Future Infantry Units using Simulation (시뮬레이션을 활용한 미래 보병부대 전투실험)

  • Lim, Jong-Won;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Owing to the development of science technology, particularly the smart concept and defense policy factors of the 4th industry, military weapon systems are advanced, and the scientific and operational force is reduced dramatically. The aspect of the future war is characterized by the operation of troops with reduced forces from advanced and scientific weapon systems in an operational area that has expanded more than four times compared to the present. Reflecting on these situational factors, it is necessary to improve combat methods based on the changes in the battlefield environment and advanced weapon systems. In this study, to find a more efficient future combat method in a changing war pattern, this study applied the battle experiment methodology using Vision21 war game model, which is an analytical model used by the army. Finally, this study aimed to verify the future combat method and unit structure. Therefore, the scenario composition and experiment method that reflect the change in the ground operational environment and weapon system was first composed. Subsequently, an analysis method based on the combat effectiveness was applied to verify the effective combat performance method and unit structure of future infantry units.