• Title/Summary/Keyword: 화강암 부순잔골재

Search Result 3, Processing Time 0.022 seconds

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Drying Shrinkage Evaluation of Concretes with Various Volume-Surface Ratios, Aggregate Types and Concrete Pavement Mixes (시험체 형상비와 골재종류 및 배합특성에 따른 건조수축 특성평가)

  • Yang, Sung-Chul
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • This study was performed to analyze test results on drying shrinkage for concrete specimens mixed with various constituents in concrete mixes. Test variables are coarse aggregate types(Limestone, Sandstone, Granite, Andesite, Gneiss), fine aggregate types(natural sand, crushed sand) and cement amounts(normal strength, high strength). Epoxy coating of(U&V-H(A,B)) was applied onto the specimen surface to simulate diverse volume surface ratios(22.2, 40, 85.7, 150, 200, 300) with different specimen sizes. The experiments had been executed during 1,014 days at a condition of $20^{\circ}C$ and relative humidity of 60% in environmental chambers. Test results showed that shrinkage strain from the specimen equivalent to real pavement decreased to 39% compared to the standard specimen recommended by KS. Test results also showed that shrinkage strain of the specimen mixed with Limestone was 56~76% of that with Sandstone, thus Limestone mix seems to be suitable to the concrete pavement.