• Title/Summary/Keyword: 화강섬록암

Search Result 112, Processing Time 0.017 seconds

Characteristics of Fracture System in Precambrian Metamorphic Rocks and Mesozoic Granites from Seokmo-do, Ganghwa-gun (강화군 석모도 일대의 선캠브리아기 변성암류 및 중생대 화강암류에서 발달하는 단열계의 분포특성)

  • Park, Deok-Won;Lee, Chang-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2010
  • The properties of fracture system in Precambrian Jangbong schist and Mesozoic granites from Seokmo-do, Ganghwa-gun were investigated and analyzed. Most of the fractures measured at outcrops are nearly vertical or steeply dipping. Orientations of fracture sets in terms of frequency order are as follows: Set $1:N2^{\circ}E/77^{\circ}SE$, Set $2:N17^{\circ}E/84^{\circ}NW$, Set $3:N26^{\circ}E/64^{\circ}SE$, Set $4:N86^{\circ}W/82^{\circ}SW$, Set $5:N80^{\circ}W/77^{\circ}NE$, Set $6:N60^{\circ}W/85^{\circ}SW$, Set $7:N73^{\circ}E/87^{\circ}NW$, Set $8:N82^{\circ}W/53^{\circ}NE$, Set $9:N23^{\circ}W/86^{\circ}SW$, Set 10: $N39^{\circ}W/61^{\circ}NE$. Especially, the rose diagram of fracture strikes(N:240) indicates that there are two dorminant directions of N-S~NNE and WNW. These distribution pattern of fractures from Seokmo-do correponds with those of major lineaments from South Korea suggested in previous study. Meanwhile, the scaling properties on the length distribution of fracture populations have been investigated. First, fracture sets from Precambrian Jangbong schist and Mesozoic granites(north and south rock body) has been classified into five groups(group I~V) based on strike and frequency. Then, the distribution chart generalized the individual length-cumulative frequency diagram for above five groups were made. From the related chart, five subpopulations(group I~V) that closely follow a power-law length distribution show a wide range in exponents(-0.79~-1.53). These relative differences in exponent among five groups emphasizes the importance of orientation effect. From the related chart, the diagram of group III occupies an upper region among five groups. Finally, the distribution chart showing the chracteristics of the length frequency distribution for each rock body were made. From the related chart, the diagram of each rock body shows an order of porphyritic biotite granite < hornblende granodiorite < medium-grained biotite granite(south rock body) < medium-grained biotite granite(north rock body) < Precambrian Jangbong schist. From the related chart, the diagram of more older rock body in the formation age tends to occupy an upper region. Especially, the diagram of Precambrian Jangbong schist occupies an upper region compared with the diagrams of Mesozoic granites. These distributional chracteristics suggests that coexistence of new fracture initiation and growing of existing fractures corresponding with stress field acted since the formation of rock body.

Geology and Distribution of Crushed Aggregate Resources in Korea (국내 골재석산의 분포와 유형 분석)

  • Hong Sei Sun;Lee Chang Bum;Park Deok Won;Yang Dong Yun;Kim Ju Yong;Lee Byeong Tae;Oh Keun Chang
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.555-568
    • /
    • 2004
  • The demand of aggregate resources in Korea has been increased with a rapid economic growth since the 1980s. About 25% of the total aggregate production is derived from riverine aggregates, 20% to 25% from marine sands, 40% to 45% from crushed aggregate and the rest 5% to 15% from old fluvial deposits. The abundance of crushed coarse aggregates varies in the uniform distribution of country, but in general it can be concentrated in the most densely populated areas, five main cities. Typical rock types of the Korean crushed stones are classified as plutonic rocks of 27%, metamorphic rocks of 32%, sedimentary rocks and volcanic rocks of 18%, respectively. The most abundant coarse aggregate used in the country is obtained from granite (25% of total) and subordinately gneiss (20%), sandstone (10%) and andesite (10%). Although rock types using as dimension stone are only fifteen, those as aggregate amount up to twenty nine rocks. These rocks consist of plutonic rocks such as granite, syenite, diorite, aplite, porphyry, felsite. dike and volcanic rocks such as rhyolite, andesite, trachyte, basalt, tuff, volcanic breccia and metamorphic rocks such as gneiss, schist, phyllite, slate, meld-sandstone, quartzite, hornfels, calc-silicate rock, amphibolite. And sandstone, shale, mudstone, conglomerate, limestone, breccia, chert are main aggregate sources in tile sedimentary rocks. The abundance of plutonic rocks is the highest in Chungcheongbuk-do, and decreases as the order of Jeollabuk-do, Gangwon-do and Gyeonggi-do. In Jeollanam-do, volcanic aggregates occupy above 50%, on the contrary sedimentary aggregates are above 50% in Gyeongsangnam-do.