• Title/Summary/Keyword: 홀 접합

Search Result 72, Processing Time 0.032 seconds

A Study of Extrusion Process for Al 3003 Condenser Tube (Al 3003 컨덴서 튜브의 직접압출 연구)

  • Bae, Jae-Ho;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1043-1050
    • /
    • 2005
  • Condenser tube is a component of the heat exchanger in automobile and air conditioning apparatus. It is generally made from the 1000 or 3000 series Al alloys that have good heat efficiency. In the case of 3000 series, these have high strength and hardness but have the disadvantage of low extruability. The development of extruding process in condenser tube with 3000 series Al alloys is studied in this paper. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness of welded part and the others in cross-section of tube.

Development of a Cemented Carbide-Welded Deburring Tool for Burr Removal in Drill Holes of AL6061 Workpieces (AL6061 소재의 홀 가공 시 버 제거를 위한 초경합금 접합 디버링 공구 개발)

  • Sa, Min-Woo;Lee, Jae-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • In recent years, automated process technology has allowed for the rapid manufacturing of metal parts. Maintaining high product quality is of vital importance during the production of these parts. Surface defects occurring after processing can compromise their assembly precision and performance. In this study, a deburring tool was developed that can remove burrs generated from drilling. Through the evaluation of processing, burrs were completely removed at entrance and exit surfaces. Therefore, this newly developed deburring tool shows better performance than deburring tools currently in use.

Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die (포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석)

  • Lee, J. M.;lee, S. K.;Kim, B. M.;Jo, H. H.;Jo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF

절연절단 방식의 프로브 빔 제작

  • Hong, Pyo-Hwan;Gong, Dae-Yeong;Pyo, Dae-Seung;Lee, Jong-Hyeon;Lee, Dong-In;Kim, Bong-Hwan;Jo, Chan-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.449-449
    • /
    • 2013
  • 최근 반도체 소자의 집적회로는 점점 복잡해지고 있는 반면, 소자의 크기는 작아지고 있으며 그로 인해 패드의 크기가 작아지고 패드사이의 간격 또한 협소해지고 있다. 따라서 웨이퍼 단계에서 제조된 집적회로의 불량여부를 판단하기위한 검사 장비인 프로브카드(Probe Card)의 높은 집적도가 요구되고 있다. 하지만 기존의 MEMS 공법으로 제작되는 프로브 빔은 복잡한 제조 공정과 높은 생산비용, 낮은 집적도의 문제점을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 간단한 제조 공정과 낮은 생산비용, 높은 집적도를 가지는 프로브 빔을 개발하기 위하여 절연절단 방식으로 BeCu (Beryllium-Copper) 프로브 빔을 제작하였다. 낮은 소비 전력으로 우수한 프로브 빔 어레이를 제작하기 위해서 가장 고려해야할 대상은 프로브 빔의 재료와 구조(형상)이다. 절연전단 방식으로 프로브 빔을 형성할 때 요구되는 Fusing current는 프로브 빔의 구조(형상)에 크게 영향을 받는다. 낮은 Fusing current는 소비 전력을 줄여주고, 절연절단으로 형성되는 프로브 빔의 단면(끝)을 날카롭게 하여 프로브 빔과 집적회로의 패드 간의 접촉 저항을 감소시킨다. 프로브 빔의 제작은 BeCu 박판을 빔 형태로 식각하여 제작하였으며, 실리콘 비아 홀(Via hole) 구조의 기판위에 정렬하여 soldering 공정을 통해 실리콘 기판과 BeCu 박판을 접합시켰다. 접합된 프로브 빔의 끝부분을 들어 올린 상태로 전류를 인가하여 stress free 상태로 만들어 내부 응력을 제거하였으며, BeCu 박판에 fusing current를 인가하여 BeCu 박판 프레임으로부터 제거를 하였다. 제작된 프로브 빔의 길이는 1.7 mm, 폭은 $50{\mu}m$, 두께는 $15{\mu}m$, 절단부의 단면적은 1$50{\mu}m^2$로 제작되었다. 그리고 프로브 빔의 절단부의 길이는 $50{\mu}m$ 부터 $90{\mu}m$까지 $10{\mu}m$ 증가시켜 제작되었다. 이후에 절연절단 공정에 요구되는 Fusing current를 측정하였고, 절연절단 후의 절단면의 형상을 SEM (Scanning Electron Microscope)장비를 통하여 확인하였다. 절단부의 길이가 $50{\mu}m$일 때 5.98A의 fusing current를 얻었으며, 절연절단 후 절단부 상태 또한 가장 우수했다. 본 연구에서 제안된 프로브 빔 제작 방법은 프로브카드 및 테스트 소켓(Test socket) 생산에 응용이 가능하리라 기대한다.

  • PDF

Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method (다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증)

  • Kang, D.S.;Park, E.T.;Tullu, A.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.

Positive Shift of Threshold Voltage in short channel (L=$1.5{\mu}m$) P-type poly-Si TFT under Off-State Bias Stress (P형 짧은 채널(L=1.5 um) 다결정 실리콘 박막 트랜지스터의 오프 상태 스트레스 하에서의 신뢰성 분석)

  • Lee, Jeong-Soo;Choi, Sung-Hwan;Park, Sang-Geun;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1225_1226
    • /
    • 2009
  • 유리 기판 상에 이중 게이트 절연막을 가지는 우수한 특성의 P형 엑시머 레이저 어닐링 (ELA) 다결정 실리콘 박막 트랜지스터를 제작하였다. 그리고 P형 짧은 채널 ELA 다결정 실리콘 박막 트랜지스터의 오프 상태 스트레스 하에서의 전기적 특성을 분석하였다. 스트레스하에서 긴 채널에서의 문턱 전압은 양의 방향으로 거의 이동하지 않는 (${\Delta}V_{TH}$ = 0.116V) 반면, 짧은 채널 박막 트랜지스터의 문턱 전압은 양의 방향으로 상당히 이동 (${\Delta}V_{TH}$ = 2.718V)하는 것을 확인할 수 있었다. 이런 짧은 채널 박막 트랜지스터에서 문턱 전압의 양의 이동은 다결정 실리콘 막과 게이트 산화막 사이의 계면에서의 전자 트랩핑 때문이다. 또한, 박막 트랜지스터의 누설 전류는 오프 상태 스트레스 하에서의 채널 영역의 홀 전하로 인하여 온 전류 수준을 감소시키지 않고 억제될 수 있었다. C-V 측정 결과는 계면의 전자 트랩핑이 드레인 접합 영역부근에서 발생한다는 것을 나타낸다.

  • PDF

Process Analysis and Die Design for Al3003 Condenser Tube Extrusion with 12 Cell (Al3003 12셀 컨덴서 튜브의 압출을 위한 공정해석 및 금형설계)

  • Lee, Sang-Ho;Lee, Jung-Min;Jo, Hyung-Ho;Jo, Hoon;Kim, Mun-Bae;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.44-51
    • /
    • 2007
  • Condenser tubes are mainly produced by precision extrusion with a porthole die and are used in the flow pass of refrigerant cooling systems in automobiles. The recent technical trend of condenser tube requires the tube to be of more multi cellizing, high strength and small size, and to increase the heat transfer area and heat efficiency. Hence, this paper is shown that the results of FE-simulation are in good agreement with the experimental ones. Finally, the extrusion die shape is proposed through analysis of FE-simulation and performance of trial extrusion. Chamber shape dimension and initial temperatures of die is adjusted analysis results. And the possibility of extrusion is estimated that forming load, welding pressure and stress analysis of die in this paper. The validity of simulated results was verified into extrusion experiments on the condenser tubes.

Effect of Heat Treatments on Welding Residual Stresses of 18% Ni Maraging Steel (18% Ni 마레이징강의 용접 잔류 응력에 미치는 열처리의 영향)

  • 배강열;나석주;김원훈
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.53-61
    • /
    • 1993
  • One of the most interesting and promising steel groups considered for the rocket motor case, aircraft and aerospace component is the maraging(martensitic plus aging) nickel steel, developed by International Nickel Company in 1960. This material attains a very high strength with good fracture toughness by simple heat treatments which do not involve a quenching. Full strength can be obtained by "maraging" at 480.deg. for 3 hours for the 18% Ni maraging steel. The effect of heat treatments was considered on the residual stress field of 18% Ni maraging steel weldments. In experiments, various heat treatments such as stress relieve heat treatment, aging and solution heat treatment were carried out of the GTA weldments and the residual stresses were measured by using the hole drilling method. Whereas the conventional pattern of residual stress shows the stresses to be maximum along the weld centerline with tensile stress extending into the heat affected zone, the pattern in maraging steels shows the centerline stress to be compressive. After welding, a series of aging, solution heat treatment and solution heat treatment plus aging treatment were carried out and the residual stresses were measured to reveal that these heat treatments almost completely remove the welding residual stresses.

  • PDF

A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching (마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구)

  • Gao, L.H.;Kang, G.S.;Lee, K.;Kim, B M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.