• Title/Summary/Keyword: 홀로노믹 구속

Search Result 9, Processing Time 0.02 seconds

A posture control for underwater vehicle with nonholonomic constraint (비 홀로노믹 구속조건을 이용한 수중 이동체의 자세제어에 관한 연구)

  • 남택근;노영오;안병원;김철승
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.135-140
    • /
    • 2004
  • In this paper, we study the posture control of an underwater vehicle with nonholonomic constraint. Generally, systems with nonholnomic constraints cannot be stabilized to an equilibrium points by smooth state feedback control. Therefore, we proposed a control strategy for posture control of the underwater vehicle using backstepping control. The proposed control scheme is applied to the posture control of an underwater vehicle and verified the effectiveness of control strategy by numerical simulation.

  • PDF

A Posture Control for Underwater Vehicle with Nonholonomic Constraint (비 홀로노믹 구속조건을 이용한 수중 이동체의 자세제어에 관한 연구)

  • Nam, Taek-Kun;Kim, Chol-Seong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.469-474
    • /
    • 2004
  • In this paper, we study the posture control of an underwater vehicle with nonholonomic constraint. Generally, systems with nonholnomic constraints cannot be stabilized to an equilibrium points by smooth state feedback control. For the nonholonomic underwater vehicle system, we applied coordinate transformation to get multi-chained system We proposed non smooth feedback controller using backstepping method for stabilizing the multi chained form system Applying inverse input transformation to the non smooth feedback controller, we can get posture controller of the underwater vehicle with nonholonomic constraint. The proposed control scheme is applied to the posture control qf an underwater vehicle and verified the effectiveness of control strategy by numerical simulation.

A berthing control for underwater vehicle with velocity constraints (속도구속조건을 이용한 수중 이동체의 접안제어)

  • Nam Taek-Kun;Kim Chol-Seong;Roh Young-Oh;Park Young-San
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we study the stabilization control if an underwater vehicle from its initial posture to its desired one. We assume tint the underwater vehicle has velocity constraint, i.e. it has no velocity component for some direction. Our approach is based on the nonholonomic system which am derived from velocity constraints that cannot integrable. We proposed a control strategy for posture control of the underwater vehicle using multi-rate digital control. The proposed control scheme is applied to the berthing control if an underwater vehicle and verified the effectiveness if control strategy by numerical simulation.

  • PDF

A study on the computer simulation model of the NONHOLONOMIC rotating motion system about the closed system (폐쇄된 계에서 비 흘로노믹 (NONHOLONOMIC) 회전 운동 SYSTEM에 대한 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.5
    • /
    • pp.221-226
    • /
    • 2009
  • The closed system's internal rigid body particle rotation motion can be distinguished by a main body that becomes the core of the rotation and the particles that are subjected to the rotation. The instance of particles becoming bounded to the main body as a holonomic system, has till now, been well defined and formulated in the study of Kinetics, and the structure of the formulas relate well to reality. However, when the structure is non-holonomic it deviates from these existing equations. The purpose of this research is to categorize the differences between a holonomic system and a non-holonomic system when rotating, through devices. With a special emphasis on the real phenomenon of the non-holonomic system which will be formulated in the form of a model or computer simulation. With these formulas, the center of mass shift in a closed rotating motion system and confined motion of external friction will be adequately expressed, so that it may be applied to computer graphics motions methods.

  • PDF

Motion Control Design of Constrained Mechanical Systems (구속된 기계시스템의 운동제어 설계)

  • 조중선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.154-162
    • /
    • 1997
  • 본 논문은 구속된 기계 시스템의 운동 제어 설계를 위한 새로운 방법을 제안한다. 구속된 기계 시스템의 운동 제어에는 지금까지 주로 사용되어온 Lagrange의 운동 방정식에 의한 모델링 보다 Udwadia와 Kalaba에 의해 제안된 운동 방정식에 의한 모델링이 더욱 적합함을 보였으며 이는 Holonomic 및 Nonholonomic 구속 조건을 비롯한 대부분의 구속 조건이 포함된다. 문헌에 잘 알려진 두 시스템을 시뮬레이션을 통하여 비교 함으로써 본 논문에 제안된 방법이 보다 우수한 결과를 보여줌을 확인 할 수 있었다. 또한 지금까지 불가능 하였던 비선형 일반 속도(gereralized velocity)를 포함한 구속 조건도 용이하게 제어됨을 보임으로써 광범위한 구속된 기계 시스템의 제어 문제를 통일된 방법으로 접근 할 수 있음을 제시하였다.

  • PDF

Control of a Three-pole Hybrid Active Magnetic Bearing using Redundant Coordinates (잉여좌표계를 이용한 3-폴 하이브리드형 자기베어링 제어)

  • Park, Sang-Hyun;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1375-1381
    • /
    • 2007
  • In this paper, we propose a linear modeling and identical PD controller design scheme for the three-pole hybrid-type AMB recently developed in the laboratory, which consists of three permanent magnets, providing bias flux, three Hall diodes, measuring rotor displacements, and ring type permanent magnet bearing, stabilizing in axial and tilting directions. Along the three physical coordinates formed by three poles, we introduce the redundant coordinate system and three identical decoupled controllers to construct linear model. The experiments are also carried out in order to verify the effectiveness of proposed controller in stabilizing the transient and steady state response of rotor.

  • PDF

Decoupled Control of Active and Permanent Magnetic Bearing System (자기 베어링과 영구자석 베어링으로 이루어진 시스템의 비 연성 제어)

  • Park, Sang-Hyun;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, we propose a bearing redundant coordinates and decoupled PD controller for 5-axes active magnetic bearing system, which consists of two bearing parts such as three-pole hybrid active magnetic bearing for stabilize the radial direction and ring-type permanent magnetic bearing stabilizing in axial and tilting motion. Based on derived system equation with decoupled control scheme, we conduct the modal analysis and measure of modal controllability and observability.

  • PDF

A Self-Organizing Fuzzy Control Approach to the Driving Control of a Mobile Robot (자기구성 퍼지제어기를 이용한 이동로봇의 구동제어)

  • Bae, Kang-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.46-55
    • /
    • 2006
  • A robust motion controller based on self-organizing fuzzy control(SOFC) and feed-back tracking control technique is proposed for a two-wheel driven mobile robot. The feed-back control technique of the controller guarantees the robot follows a desired trajectory. The SOFC technique of the controller deals with unmodelled dynamics of the vehicle and uncertainties. The computer simulations are carried out to verify the tracking ability of the proposed controller with various driving situations. The results of the simulations reveal the effectiveness and stability of the proposed controller to compensate the unmodelled dynamics and uncertainties.

Posture control for the free flying objects using chained form transformation. (체인드 폼을 이용한 공중부상체의 자세제어.)

  • Nam, Taek-Kun;Lee, Ki-Changi;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2378-2380
    • /
    • 2003
  • 본 연구에서는 각 운동량 보존법칙으로부터 도출되어지는 공중부상체(flying objects)의 제어기법에 대해 논의하고자 한다. 먼저, 공중부상체에 대하여 각 운동량 보존법칙을 적용하여 적분불가능한 구속조건으로부터 비 홀로노믹시스템을 도출하고 상태변환과 입력변환을 행하여 제어가 용이한 체인드 폼(Chained form)을 유도한다. 체인드 폼에 대해서는 백스테핑제어기법을 적용하여 제어기를 설계하고 제어기법의 유용성을 검증하기 위하여 3개의 회전관절로 구성된 공중부상체를 대상으로 하여 초기자세로부터 목적자세까지의 제어를 행하였다.

  • PDF