• Title/Summary/Keyword: 혼합 중금속

Search Result 313, Processing Time 0.027 seconds

Effects of Heavy Metal and Salinity on Electrical Conductivity in Fully Saturated Sand (포화된 사질토의 전기전도도에 중금속과 염분 농도가 미치는 영향)

  • Lee, Dongsoo;Hong, Young-Ho;Hong, Won-Teak;Chae, Kwang-Seok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.23-34
    • /
    • 2017
  • As the electrical property of fully saturated soils is dependent on the pore water, it has been commonly used for the detection of the contamination into the ground. The objective of this study is to investigate the electrical characteristics according to the salinity and the lead concentration in fully saturated soils. Fresh water and saline water with the salinity of 1%, 2% and 3%, which are mixed with 6 different lead solutions with the range of 0~10 mg/L, are prepared in the cylindrical cell incorporated with sensors for measuring electrical resistance and time domain reflectometry signal. Then, the dried sands are water-pluviated into the cell. The electrical resistance and the time domain reflectometry signal are used to estimate the electrical conductivity. Test results show that electrical conductivity determined from electrical resistance at the frequency of 1 kHz continuously increases with an increase in the lead concentration, thus it may be used for the estimation of the contaminant level. In addition, the electrical conductivity estimated by the time domain reflectometry changes even at very low concentration of lead, the variation rate decreases as the lead concentration increases. Thus, the time domain reflectometry can be used for the investigation of the heavy metal leakage. This study demonstrates that complementary characteristics of electrical resistance and time domain reflectometry may be used for the detection of the leakage and contamination of heavy metal in coastal and marine environments.

Laboratory Study on the Removal of Heavy Metals Using Apatite for Stabilization of Tailings at the Ulsan Abandoned Iron Mine (울산폐철광산 광미 안정화를 위한 인회석의 중금속 제거 실내실험)

  • Choi, Jung-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to evaluate laboratory experiments on arsenic and cadmium removal from tailings using apatite at the Ulsan Abandoned Iron Mine, and to develop a stabilization technique. The results of this study show that the permeability is decreased proportionally to the amount of apatite when it is added below 8%, while this is almost constant when the amount of apatite is added above 10%. The water extraction test from tailings using deionized water for several days shows that pH (7.4-8.4) is almost constant or slightly increased when apatite is added below 8%, while it is slightly decreased when apatite is added above 10%. According to TCLP test, reduction of concentrations of heavy metals in leachate is proportional to amount of apatite added. It seems that precipitates generated from leachate-apatite chemical reaction are not redissolved. As a result, cadmium and arsenic in leachate is mostly removed when apatite is added above 10%, and it is suggested that a proper technique should be selected for field application because either mixed or layered method shows almost same removal efficiencies of cadmium and arsenic in tailings.

A Study on the Damage Degree of Hair Dye Treatments and the Impact of Heavy Metals (트리트먼트(Treatment)를 이용한 모발 염색이 손상도와 중금속 함량에 미치는 영향)

  • Lee, Tae-Sook;Kim, Younghee
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.551-557
    • /
    • 2017
  • Hair beauty treatments that can express individuality have increased and diversified. However, their repetitive use has also brought about hair damage. To reduce such damage, the importance of hair treatments when receiving chemotherapy has magnified greatly. In this study, the hair (normal hair, NH) of 5 people in their 20s has been collected and observed with SEM before dyeing (NH), after dyeing (DH) and after dyed and treated (DTH) to measure the hair's morphological damage and mineral content. SEM observation results revealed that, in DTH, a cuticle-like arrangement appears almost uniformly, the hair settles, the lines are smooth, and the damage degree is low. Regarding mineral content, the concentration of minerals was generally balanced. However, in the observation of toxic minerals and minerals found in large amounts, the concentration of Ba, Na, Ca, and Mg was higher than the balance range in NH, DH, and DTH.

A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment (당진화력발전소의 석탄회 연안매립과 중금속 원소의 용출에 대한 생지화학적 연구)

  • Cho, Kyu-Seong;Roh, Yul;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.112-122
    • /
    • 2007
  • It is known that coal-derived fly ashes have the unique chemical composition and mineralogical characteristics. Since iron oxides in coal fly ash are enriched with heavy metals, the subsurface media including soils, underground water, and sea water are highly likely contaminated with heavy metals when the heavy metals are leached from fly ashes by water-fly ash interactions. The purpose of this study was to investigate how indigenous bacteria affect heavy metal leaching and mineralogy in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Dangjin seashore, Korea. The average pH of ash pond seawater was 8.97 in nature. Geochemical data showed that microbial activity sharply increased after the 7th day of the 60-day course batch experiments. Compared with other samples including autoclaved and natural samples, ${SO_4}^{2-}$ was likely to decrease considerably in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data including Eh/pH, alkalinity, and major and trace elements showed that the bacteria not only immobilize metals from the ash pond by facilitating the chemical reaction with Mn, Fe, and Zn but may also be able to play an important role in sequestration of carbon dioxide by carbonate mineral precipitation.

Environmental Characteristics of Leachates from Steel Slag (제강슬래그 침출수의 환경적 특성)

  • Park, Jong-Beom;Lee, Byoung-Chan;Jang, Min-Ho;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.31-38
    • /
    • 2012
  • The recycled aggregate for construction, slag, coal ash and such may elute leachates by chemical reaction when in touch with water, and to confirm this, generally the waste process test is executed. If the test result criteria are met, it can be used as replacement aggregate. In case of steel slag, however, the chemical reaction does not end in a short term, but occurs over a long time, generating eluted leachate. Thus, in this study, the leachate from steel slag were analyzed for heavy metal, and the pH change and environmental characteristics of eluted leachate were analyzed. According to the experiment result, the chemical reaction of free CaO and water within the steel slag occurred more actively when stirred, and the smaller the grain size, the higher the pH was. As the result of waste process test, all test items for the two types of specimen were found to have no heavy metal, but from the ICP test analysis result, heavy metals such as Al, Pb, Zn, Fe were detected. It could be confirmed that chemical reaction would occur upon contact of steel slag and water, and heavy metal may be detected depending on experiment conditions and analysis methods, the long-term environmental characteristics should be examined for utilization of steel slag.

Adsorption Properties for Heavy Metals Using Hybrid Son Exchange Fibers with Sulfonated PONF-g-Styrene by Radiation Polymerization and Cation Exchange Resin (방사선 중합 설폰화 PONF-g-스티렌과 양이온교환수지 복합 이온교환섬유의 중금속 흡착 특성)

  • Baek, Ki-Wan;Cho, In-Hee;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • In this study, Sulfonated PONF-g-styrene ion exchange fibers were synthesized by radiation induced graft copolymerization. And also, hybride ion exchange fibers, which was combined sulfonated PONF-g-styrene fibers and cationic ion exchange resin, were fabricated by hot melt adhesion method and then their adsorption properties were investigated. ion exchange capacity and water content of hybrid ion exchange fibers increased as compared with those of bead and ion exchange fiber. Their maximum values were 4.76 meq/g and 23.5%, respectively. Adsorption breakthrough time for mercury of hybrid ion exchange fiber was slower than those of bead resin and fibrous ion exchanger. It's value was 130 minutes. Their breakthrough time become short as increasing of pH, and concentration. The initial breakthrough time was observed before and after 10 minutes as increasing of concentration. The adsorption of hybrid ion exchange fibers for $Hg^{2+}\;Pb^{2+},\;Cd^{2+}$ among heavy metals in the mixed solution was observed before 20 min. And also, The adsorption for $Hg^{2+}$ among the heavy metals by hybride ion exchange fibers was observed.

A Biological Complex Soil Treatment Process Using Selected Soil Bacterial Strains (현장 미생물을 이용한 생물학적 복합토양정화공정에 관한 연구)

  • Cha, Minwhan;Lee, Hanuk;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • The research is intended to develop and verify a biological complex soil treatment process to treat and restore soil and groundwater which is contaminated with oil, heavy metals, and nutrients through experiments with the series of treatment process such as bioreactor, rolled pipe type of contact oxidation system(RPS), and chemical processing system. 5 microbial strains were separated and selected through experiment, whose soil purification efficiency was excellent, and it was noted that anion- and nonion-series of complex agent was most excellent as a surfactant for effectively separating oils from soils. Method to mix and apply selected microbes after treating the surfactant in the contaminated soil was most effective. The removal efficiencies of total petroleum hydrocarbon (TPH)-contaminated soil about 5,000mg/L and above 10,000mg/L were approximatly 90.0% for 28 days and 90.7% for 81 days by soil remediation system and the average removal efficiencies of BOD, $COD_{Mn}$, SS, T-N, and T-P in leachate were 90.6, 73.0, 91.9, 73.8, 65.7% by the bioreactor and RPS. The removal efficiency was above 99.0% by chemical processing system into cohesive agents.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Gwangyang and Yeosu Bay, south coast of Korea (광양만 및 여수해만 표층퇴적물의 지화학적 특성과 중금속 오염)

  • 현상민;이태희;최진성;최동림;우한준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.380-391
    • /
    • 2003
  • Surface sediments were collected from Gwangyang and Yeosu Bays to evaluate their sedimentological characteristics and geochemical aspects of both the benthic environment and heavy metal pollution. The grain size distribution includes both sandy and muddy sediments. Sand-rich sediments occur mainly near the POSCO and the channel between Namhedo and Yeosu Bando, while elsewhere mud-dominated sediments are present. TOC content ranges from 0.2 to 2.1 % and C/N ratios indicate that the range arises from the mix of organic matter. The C/S ratios of this organic matter show that parts of the study area are anoxic or have sub-anoxic bottom conditions. The hydrogen sulfide content of the sediment has a range of 0.7 to 301 ppm, with a high content occurring inshore of Myodo Island, where it indicates a polluted environment. The enrichment factor (Ef) and index of accumulation rate (Igeo) of ten heavy metals (Co, Ni, Cu, Cd, Pb, Li, Zn, V, Cr, Ba) show that parts of the study area contain from one to seven times more Pb and Ba, and from 0.8 to 3.5 times more of the other elements than the mean sediment value. The Igeo values of V and Cd show that different parts of the area can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted. Those areas that have both high levels of enrichment and high accumulation rates of heavy metals contain predominantly fine sediments with a high organic matter and hydrogen sulfide content.

Feeding efficiencies and growth rates of tiger worms(Eisenia fetida Savigny) when they were fed with differently pretreated sewage sludges (하수슬러지의 전처리 방법에 따른 줄지렁이(Eisenia fetida savigny)의 섭식효율 및 생장)

  • Park, Kwang-ll;Bae, Yoon-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.66-78
    • /
    • 2003
  • The effects of several factors such as heavy metals, living microorganims, high molecular conglomerator in sewage sludge were analysed. And the effects of the sewage sludges which were mixed with other organic waste such as paper mill sludge or night soil sludge upon the feeding rate and biomass of earthworm population were also estimated. The earthworm populations could not survive when newly produced sewage sludges were fed without any pretreatment. The contents of heavy metals were under the levels that could inhibit earthworm's growth. The living microorganisms and the high molecular conglomerator in the sewage sludge had no relations with ecotoxicological effects of sewage sludge upon the earthworm population. Sewage sludge which had been mixed with paper mill sludge and aged for more than 21 days showed no ecotoxicological effects on tiger worm(Eisenia fetida) population. And the feeding rate of earthworm population and the turnover rate of earthworm biomass were higher in those sewage sludges than in the sewage sludges pretreated by other ways.

  • PDF

Effect of Temperature on Cu Adsorption and Competitive Adsorption of Zn and Cu onto Natural Clays using Combined Adsorption-sequential Extraction Analysis(II) (혼합 흡착-연속추출법을 이용한 점토 차수재의 구리(Cu) 흡착 및 아연과 구리 경쟁 흡착 시 온도 영향에 관한 연구(II))

  • 도남영;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.157-170
    • /
    • 2000
  • In this study, we conducted a combined adsorption-sequential extraction analysis(CASA) to investigate temperature effects of single and competitive adsorption of zinc and copper on natural clays. As a result, it was found out that in a single adsorption of zinc, the adsorption was mostly in the exchangeable phase, with increase n temperature. In a competitive adsorption of zinc, this trend was so strong that the exchangeable phase adsorption increase up to 80~90%. On the other hand, about 50% of copper was adsorbed in the carbonate occluded phase in single and competitive adsorptions. In the single adsorption the adsorption of carbonate occluded phase increased by 5% with the temperature increase and in the competitive adsorption the increase rate is about twice. The adsorption of zinc and copper on natural clays is an endothermic reaction with the exception of exchangeable phase adsorption.

  • PDF