• Title/Summary/Keyword: 혼합 자질 가변 표지기

Search Result 2, Processing Time 0.015 seconds

ManiFL : A Better Natural-Language-Processing Tool Based On Shallow-Learning (ManiFL : 얕은 학습 기반의 더 나은 자연어처리 도구)

  • Shin, Joon-Choul;Kim, Wan-Su;Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.311-315
    • /
    • 2021
  • 근래의 자연어처리 분야에서는 잘 만들어진 도구(Library)를 이용하여 생산성 높은 개발과 연구가 활발하게 이뤄지고 있다. 이 중에 대다수는 깊은 학습(Deep-Learning, 딥러닝) 기반인데, 이런 모델들은 학습 속도가 느리고, 비용이 비싸고, 사용(Run-Time) 속도도 느리다. 이뿐만 아니라 라벨(Label)의 가짓수가 굉장히 많거나, 라벨의 구성이 단어마다 달라질 수 있는 의미분별(동형이의어, 다의어 번호 태깅) 분야에서 딥러닝은 굉장히 비효율적인 문제가 있다. 이런 문제들은 오히려 기존의 얕은 학습(Shallow-Learning)기반 모델에서는 없던 것들이지만, 최근의 연구경향에서 딥러닝 비중이 급격히 증가하면서, 멀티스레딩 같은 고급 기능들을 지원하는 얕은 학습 기반 언어모델이 새로이 개발되지 않고 있었다. 본 논문에서는 학습과 태깅 모두에서 멀티스레딩을 지원하고, 딥러닝에서 연구된 드롭아웃 기법이 구현된 자연어처리 도구인 혼합 자질 가변 표지기 ManiFL(Manifold Feature Labelling : ManiFL)을 소개한다. 본 논문은 실험을 통해서 ManiFL로 다의어태깅이 가능함을 보여주고, 딥러닝과 CRFsuite에서 높은 성능을 보여주는 개체명 인식에서도 비교할만한 성능이 나옴을 보였다.

  • PDF

Korean Named Entity Recognition using ManiFL (ManiFL을 이용한 한국어 개체명 인식)

  • Kim, Wansu;Shin, Joon-choul;Park, Seoyeon;Ock, CheolYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.633-636
    • /
    • 2021
  • 개체명 인식은 주어진 문장 안의 고유한 의미가 있는 단어들을 인명, 지명, 단체명 등의 미리 정의된 개체의 범주로 분류하는 문제이다. 최근 연구에서는 딥 러닝, 대용량 언어 모델을 사용한 연구들이 활발하게 연구되어 높은 성능을 보이고 있다. 하지만 이러한 방법은 대용량 학습 말뭉치와 이를 처리할 수 있는 높은 연산 능력을 필요로 하며 모델의 실행 속도가 느려서 실용적으로 사용하기 어려운 문제가 있다. 본 논문에서는 얕은 기계 학습 기법을 적용한 ManiFL을 사용한 개체명 인식 시스템을 제안한다. 형태소의 음절, 품사 정보, 직전 형태소의 라벨만을 자질로 사용하여 실험하였다. 실험 결과 F1 score 기준 90.6%의 성능과 초당 974 문장을 처리하는 속도를 보였다.

  • PDF