• Title/Summary/Keyword: 혼합 유동

Search Result 1,042, Processing Time 0.031 seconds

Experimental Study of Performance and Bubble Pattern of Air-Lift Pumps with Various Tube Diameters and Submergence Ratios (공기부양 펌프의 관직경과 잠수비 변화에 따른 기포 형상과 성능에 관한 실험적 연구)

  • Kim, Seung Hwan;Sohn, Chae Hoon;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.837-845
    • /
    • 2013
  • An airlift pump can be used to pump liquids and sediments within itself, which cannot easily be pumped up by a conventional method, by using the airlift effect. This characteristic of the airlift pump can be exploited in a DCFC (Direct Carbon Fuel Cell) so that molten fuel with high temperature may be carried or transported. The basic characteristics of airlift are investigated. A simple system is constructed, where the reservoir is filled with water, a tube is inserted, and air is supplied from the bottom of the tube. Then, water is lifted and its flow rate is measured. Bubble patterns in the tube are observed in a range of air flow rates with the parameters of the tube diameter and submergence ratio, leading to four distinct regimes. The pumping performance is predicted, and the correlation between the supplied gas flow rate and the induced flow rate of water is found.

Study on the Prediction of Pressure Drop for Alternative Refrigerants with lubricant in Micro-Fin Tubes (미세휜관내 윤활유를 포함한 대체냉매의 압력강하 예측에 관한 연구)

  • Choi, Jun-Y.;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a pressure drop correlation for evaporation and condensation of alternative refrigerant with oil in micro-fin tubes. The correlation was developed from a data base consisting of oil-free pure and mixed refrigerants in micro-fin tube; Rl25 R134a. R32 R410a(R32/R125 50/50% mass), R22, R407c(R32/R125/R134a, 23/25/52% mass) and R32/R134a(25/75% mass). The micro-fin tube used in this paper had 60 0.2mm high fins with a 18 helix angle. The cross sectional flow area $(A_c)$ was $60.8 mm^2$ giving an equivalent smooth diameter$(D_e)$ of 8.8mm. The hydraulic diameter $(D_h)$ was estimated to the 5.45mm. The new correlation was obtained by replacing the friction factor and the tube-diameter in Bo Pierre correlation by a friction factor derived from pressure drop data for a micro-fin tube and the hydraulic diameter, respectively. This correlation was also used to predict some pressure data with a lubricant after using a mixing viscosity rule of lubricants and refrigerants. As a result, the new correlation was also well predicted to the measured data within a mean deviation of 19.0%.

  • PDF

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.

Numerical Analysis of Unsteady Heat Transfer for the Location Selection of Anti-freeze for the Fire Protection Piping with Electrical Heat Trace (소방 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Lee, Dong-Wook;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • In this paper, the unsteady incompressible Navier-Stokes equations coupled with energy equation were solved to find out the optimal location of electrical heat trace for anti-freeze of water inside the pipe for fire protection. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the numerical experiments, the isotherms and the vector fields in water region were obtained. Furthermore, it was found that the lowest part of the pipe cross-section was an optimal position of electrical heat trace assuming the constant thermal expansion coefficient of water since the minimum temperature of the water with the position is higher than those with the other positions.

A Combustion Characteristics of Attached Jet Flame under the Regular Oscillation (규칙적인 진동 하에서 노즐 부착된 제트화염의 연소특성)

  • Kim, Dae-Won;Lee, Kee-Man
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • A general combustion characteristics of forcing nonpremixed jet in laminar flow rates have been conducted experimentally to investigate the effect of forcing amplitude with the resonant frequency of fuel tube. There are two patterns of the flame lift-off feature according to the velocity increasing; one has the decreasing values of forcing amplitude on the lift-off occurrence when a fuel exit velocity is increasing, while the other has the increasing values. These mean that there are the different mechanisms in the lift-off stability of forced jet diffusion flame. Especially, the characteristics of attached jet flame regime are concentrically observed with flame lengths, shapes, flow response and velocity profiles at the nozzle exit as the central figure. The notable observations are that the flame enlogation, in-homing flame and the occurrence of a vortical motion turnabout have happened according to the increase of forcing amplitude. It is understood by the velocity measurements and visualization methods that these phenomena have been relevance to an entrainment of surrounding oxygen into the fuel nozzle as the negative part of the fluctuating velocity has begun at the inner part of the fuel nozzle.

도공층의 공극 구조와 인쇄후 잉크의 잔류거동에 관한 연구

  • 김병수;최창활;정성욱
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.76-76
    • /
    • 2001
  • 종이가 가지는 공극 특성은 종이의 광학적 특성에 지대한 영향을 미칠 뿐만 아니라 인쇄용 지로서 사용될 때 잉크의 다공성 기질로서 잉크의 잔류 특성에도 큰 영향을 미친다. 특히 다공성 기지의 표변에 유동성이 뛰어난 물질이 가해 질 때, 이들의 유동 특성은 기질이 지 니고 있는 공극율과 공극의 분포에 따라 큰 차이를 나타내는 것으로 알려져 있다. 이러한 공극성은 백상지의 경우 사용된 펄프의 혼합 비율과 충전제의 사용량 그리고 펄프의 고해 정도에 따라 종이의 공극울이 달라진다. 종이의 공극성이 광학적 특성과 밀접한 연관성을 지니는 것은 종이의 광산란 계수를 결정하기 때문이다. 잘 알려진 바와 같이 종이의 광산란 계수는 빛의 산란과 관계되어 백색도와 백감도에 영향을 미친다. 그러나 도공지가 인쇄 용 지로 사용 될 경우, 도공지 표면에 도피되는 영크층은 도공지가 가지고 있는 구조적 특성을 변화시킬 수 있는 제3의 요인으로 간주 될 수 있다. 결국, 인쇄가 완료된 종이의 경우 원지층, 도공층 그리고 잉크층으로 구성된다. 따라서 다양 한 공극 구조를 가지는 기질위에 잉크가 도피될 경우 기질의 공극 특성에 따라 잉크 조성분 의 침투 거동에도 많은 차이가 있을 것으로 예측된다. 잉크의 구성 요소를 살펴보면 잉크의 색상을 결정하는 안료, 단일의 각 안료 입자를 도포하여 인쇄판으로부터 종이까지 운송시키 는 기능과 인쇄기에서 잉크의 유동성을 유지하고 종이 또는 기타 피인쇄체에 전이된 후에는 건조막을 형성하는 비히클 그리고 각종 기능성 첨가제로 구성되어 있다. 동일한 성분으로 구성된 잉크를 사용하여 각각 공극성이 다른 피인쇄체 위에 인쇄 될 경우 이들 조성분의 이 동과 표면 잔류 특성에 변화가 있을 것으로 생각된다. 즉 공극성이 풍부한 기질에 도피된 잉크는 반대의 경우와 비교하여 보다 많은 조성분이 종이의 공극 속으로 침투하게 될 것이 다. 이 과정에서 특히 미세한 안료 입자의 경우 피인쇄체의 표면 공극을 채우고, 비히클의 경우 미세한 공극속으로 침투되어 경화됨으로써 피인쇄체가 지니고 있는 공극량을 감소시커 게 될 것이다. 그리고 피인쇄체의 각종 형태의 공극으로 침투된 잉크의 양에 반비례적으로 피인쇄체의 표변에 잉크가 잔류하게 될 것이다. 따라서 본 연구에서는 여러가지 안료를 사용하여 각각 다른 공극 특성을 지니는 도공지를 제조한 후 이들이 가지는 공극 특성과 잉크의 잔류 거동에 대해 고찰해 보고자 하였다.

  • PDF

Analysis of Oil Species of Illegally Disposed Oil (무단 투기 유류에 대한 유종 해석)

  • Lim, Young-Kwan;Lee, Eun-Yul;Seong, Sang-Rae;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.664-668
    • /
    • 2016
  • The contamination in soil, underground water and river environment became serious due to illegal waste dumping. In this study, our research group analyzed the oil species of illegally disposed oils from J City. After pretreating the mixture of oil, water and solid phases to obtain homogeneous phase components, the physical property analysis, atom analysis, and gas chromatography were performed. From the results showing 11.8% of oxygen content, $-6^{\circ}C$ of pour point and chromatogram pattern. the contaminated oil was identified as a vegetable one. High performance liquid chromatography (HPLC) analysis was also performed in order to know what kind of vegetable oil was, and the ratio of LLO, OOL and POL was found to be high indicating that the disposed oil is majorly the used soybean oil with some vegetable oil mixtures. This study can be used for identifying contaminators for oils from the illegal waste dumping.

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.

The Study on the Effects of Mixer Configurations on Fluid Mixing Characteristics in SCR Systems (SCR 시스템의 믹서 구조 특성에 따른 유동 혼합 특성에 관한 연구)

  • Seo, Jin-Won;Lee, Kyu-Ik;Oh, Jeong-Taek;Choi, Yun-Ho;Lee, Jong-Hwa;Park, Jin-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.192-199
    • /
    • 2008
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. The SCR system is known to be one of the most efficient and stable technologies to remove NOx through the mixing of NOx and urea solution. In the present research, the effects of mixer configurations of SCR system have been investigated to enhance the SCR performance. First, a Schlieren technique is employed to visualize the mixing characteristics of urea solution and exhaust gas. The results show that a mixer is essential to obtain proper fluid mixing. In addition, numerical studies have been made to understand the mixing characteristics through the comparison of the mal-distribution index of concentration at the several locations of the diffuser. In particular, the effects of number of blade and mixer angles on mixing characteristics were studied. The results show that the blade angle has a larger effect on the mixing characteristics than the number of blades.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.