• Title/Summary/Keyword: 혼합제

Search Result 3,205, Processing Time 0.034 seconds

Selection of bactericides for control of potato Blackleg disease in Korea (감자흑각병 (Potato Blackleg Disease) 방제를 위한 살균제 선발)

  • Zhu, Yong-Zhe;Park, Duck-Hwan;Park, Dong-Sik;Yu, Yong-Man;Kim, Song-Mun;Lim, Chun-Keum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2003
  • Potato blackleg disease caused by Erwinia carotovora subsp. atroseptica has been a serious problem in Korea. It was previously reported that four mixtures [streptomycin (9.3 ppm) + copper oxide (171.6 ppm)/copper hydroxide (146.3 ppm), streptomycin sulfate (7.0 ppm)+copper oxide (171.6ppm)/copper hydroxide (146.3 ppm)] were effective for the control of E. carotovora subsp. atroseptica. in in vitro test. Using those four mixtures and two antibiotics [streptomycin (81.4 ppm) and streptomycin sulfate (61.3 ppm)], the effectiveness of control for E. carotovora subsp. atroseptica. was conducted in the field. Two antibiotics showed over 60% of control efficacy under different soil conditions, while mixtures of two antibiotics with copper compounds did not show any control effects on the infected seed potato. Two mixtures [streptomycin (27.9 ppm)+copper hydroxide (438.9 ppm), streptomycin sulfate (21.0 ppm) + copper oxide (514.8 ppm)] were effective in the control of potato blackleg disease on the infected potato plants under different climate conditions.

An Experimental Study of the Rocket Preburner Injector (로켓 산화제 과잉 예연소기 분사기의 성능특성 연구)

  • Choi, Seong-Man;Yang, Joon-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • The oxidizer-rich preburner is applied to the high efficiency closed cycle rocket propulsion system. This system is generally operated on oxidizer-fuel mixture ratio over than 50. The spray quality and mixing performance are very important for stable combustion of this preburner. This paper presents basic design concept and spray characteristic of the oxidizer-rich preburner injector and this result could be applied to the development of the oxidizer rich preburner system.

The Change of Components of Distilled Soju Using Different Fermentation Agents (다양한 발효제를 이용한 증류식소주의 성분 변화)

  • Moon, Sae-Hee;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.466-473
    • /
    • 2018
  • The purpose of this study is to develop a distilled soju with high quality and stable brewing technology by analyzing the changes of general components and volatile components in the production of distilled soju by the use of fermentation agent such as koji and nuruk. White rice flour was used as a main raw material. White koji, yellow koji, traditional nuruk, and improved nuruk were used as a fermentation agent respectively. Also, yellow koji, traditional nuruk, and improved nuruk were added at a certain ratio to prepare white koji. The distillate was prepared by vacuum distillation and the quality characteristics were compared and analyzed. When the fermentation agent was used alone, the alcohol content was higher in the order of white koji, improved nuruk, yellow koji, and traditional nuruk. The initial acidity was higher than that of other fermentation agents and the highest alcohol content was found to be helpful for stable brewing. The highest content of higher alcohol was found in the yellow koji mash, and ethyl acetate was the highest in the traditional nuruk. When the fermentation agents were mixed, there was no difference in the alcohol content between $1^{st}$ fermentation mash and $2^{nd}$ fermentation mash. On the other hand, the content of higher alcohol was increased with the increase of the input ratio of yellow koji, and it decreased with the increase of the ratio of traditional and improved nuruk. It is expected that it will be possible to manufacture various distilled soju with different flavor and aroma if the yellow koji and the traditional nuruk are appropriately used based on the white koji having excellent fermentation characteristics and it will be very helpful for improving the stability and quality of brewing.

A Study on Preparation of Colloidal Gas Aphrons and Stability (Colloidal Gas Aphrons의 제조와 안정성에 대한 연구)

  • Yoon, Mi-Hae;Cho, Dae-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.670-677
    • /
    • 2007
  • The stability of CGAs(colloidal gas aphrons) prepared from non-ionic and ionic surfactants was investigated. Those surfactants were sodium dodecyl sulfate(SDS), Triton X-100, Tween 80 and Quillaja Saponin. The stability of CGAs prepared from single surfactants or mixed surfactants(two components) using a CGA generate. was investigated as functions of temperature, surfactant concentration and stirring time. Saponin among the single surfactants has shown the longest duration time(143 min) and then, Triton X-100, SDS, and Tween 80 were followed by at room temperature. In case of CGAs heated up to $70^{\circ}C$, SDS endured for 116 min but Saponin lasted for only 105 mit which was a considerable reduction of the duration time of CGAs at room temperature. For mixed surfactant pairs, stability of any one pairs stood between the two. That meant no synergic effect for surfactant blending. At the higher temperature, Saponin+Triton X-100 was disclosed to be the lowest, 53 min meanwhile Saponin+SDS was the highest at ambient temperature. The CGAs, initially about 140 ${\mu}m$ in diameter, began to grow right after the agitation to be about 190 ${\mu}m$ owing to coalescence of the bubbles and then became to collapse. When heated, CGAs including Saponin tended to be smaller while the others to be larger. In summary, we found that the stability of CGAs or the duration time was greater for single surfactants and at room temperature rather than for mixed surfactants that caused substantial intermolecular interactions in the CGA structure and at the higher temperature.

Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell (산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향)

  • Song, Young-Chae;Kim, Dae-Seop;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The composite anodes of exfoliated graphite (EG) and multiwall carbon nanotube (MWCNT) were fabricated by using the binders with different content of epoxy in Nafion solution. The influence of the epoxy content in the anode binder on the performance of microbial fuel cell (MFC) was examined in a batch reactor. With the increase in the epoxy content in the anode binder, increase in physical binding force was observed, but at the same time an increase in the internal resistance of MFC was also observed. This was due to the increase in activation and ohmic resistance. For the anode binder without epoxy, the maximum power density was $1,892mW/m^2$, but a decrease in maximum power density was observed with the increase in the epoxy content in the anode binder. With the epoxy content of 50% in the anode binder, a decrease in the maximum power density to $1,425mW/m^2$ was observed, which about 75.3% of the anode binder without epoxy is. However, the material consisting of the same amount of epoxy and Nafion solution is a good alternative for anode binder in terms of durability and economics of MFC.

Statuses and Perspectives of Herbicides Development Against Herbicide-Resistant Weeds in Paddy Field of Korea (논 제초제 저항성 잡초 발생에 따른 제초제 개발 현황과 방향)

  • Park, Tae-Seon
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The widespread and diverse sulfonylurea (SU) resistance problem has found in Korea, where one-shot-treatment herbicides such as pylazosulfuron/molinate and bensulfuron/molinate have been used continuously since 1989. The SU-resistant weeds of 7 annual weeds and 3 perennial weeds as of 2008 have confirmed in paddy fields in Korea. An effective management to SU-resistant weeds requires an integrated approach toward the weed control system, in particular, as to the drastic changes of herbicides development. Recent trend of new paddy herbicides in Japan has been developing to maximize the management of SU-resistant weeds. In the future, it is expected that the development of paddy herbicides in Korea is likely to be shifted toward the new "one-shot-treatment" included with herbicides of over 3-ways to maximize the control of resistant weeds. Bromobutide and carfentrazone are effective against sedges and broad-leaved weeds, respectively, and benzobicyclone and pyrimisulfam are effective against sedges and broad-leaved weeds.

A Study on the Properties and Preparation of Silicon-based Defoamer Used in the Purification of Wasted-Water Extruded in the Paper-Fabrication (제지공장의 폐수처리에 사용되는 실리콘계 소포제의 제조 및 물성에 관한 연구)

  • Choi, Sang-goo;Lee, Nae-Taek
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.614-619
    • /
    • 2005
  • The water-soluble defoamers were fabricated by the mixing polyol, modified silicon resin, silicon resin and surfactant. For the defoamers, the various properties such as phase-separation time, viscosity and defoamerability were examined. The phase-saparation time of PPG mixtures was found to be PPG 400>PPG 3,000>PPG 1000. When PPG 1000 was mixed, mixtures represented the excellent defoamerability. The phase-saparation time of silicon resin mixtures was TSF-451-350>TSF-451-200>TSF-451-50. As more of high molecular silicon resin was mixed, the resulting mixtues showed reduced defoamerability. When the TSF-451-50 was mixed, the mixture's volume was increased because of the reduction of solubility. The modified silicon resin was smoothly dispersed in water, but the compatibility with PPG was not good. The defoamerability of surfactant was SPAN 20>SPAN 60>SPAN 80. SPAN 80 showed good miscibility for the silicon resin, but not good for YAS 6406 or PPG 1000.

Thermal conductivity of acrylic composite films containing graphite and carbon nanotube (흑연과 탄소나노튜브를 함유한 아크릴 복합체 박막의 열전도도)

  • Kim, Jun-Yeong;Gang, Chan-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.185-185
    • /
    • 2016
  • 아크릴계 수지(resin)에 인조 흑연과 탄소나노튜브(carbon nanotube)를 1:1 비율로 혼합한 충전제(filler)와 용제(solvent) 및 기타 첨가제(additives)를 혼합하여 방열도료를 제조하여 수직방향 열전도도를 상온에서 평가하였다. 충전제의 함량을 1, 2, 5 중량 %로 변화시키며 원료들을 준비하여 교반기로 혼합한 뒤 3단 롤 밀(three roll mill)로 분산공정을 진행하여 3 종류의 도료를 제조하였다. 제조한 도료를 가로 11 mm, 세로 11 mm, 두께 0.4 mm의 Al 5052 알루미늄 기판에 스프레이 코팅 방식으로 도포한 후 $150^{\circ}C$에서 30분 동안 열경화 건조 과정을 거쳐 샘플을 제작하였다. 측정 시료의 형상은 대략적으로 Fig. 1과 같다. 열전도도는 식 $k={\alpha}{\cdot}C_p{\cdot}{\rho}$를 사용해서 계산된다. 여기서 k는 열전도도($W/m{\cdot}K$), ${\alpha}$는 열확산계수($mm^2/s$), $C_p$는 비열($J/kg{\cdot}K$), ${\rho}$는 밀도($g/cm^3$)를 나타낸다. 열확산계수는 독일 NETZSCH 사의 Laser Flash Analysis 장비(모델명 LFA 457)를 사용하여 측정하였는데, 기판 뒤쪽에서 레이저를 조사하고 도료층 전면에서 적외선 온도센서를 통해 시간에 따른 온도 상승곡선을 구한 후, 두 물체의 계면에서의 접촉 열저항(contact thermal resistance)을 감안하여 장비에 내장되어 있는 소프트웨어로 열확산계수가 계산된다. 비열은 같은 회사의 DSC(Differential Scanning Calorimetry) 200 F3 장비를 사용해 측정했으며, 밀도는 부피와 질량을 측정한 값을 이용하여 계산하였다. 도료를 도포하지 않은 bare Al plate에 대해서는 쉽게 열확산계수, 비열, 밀도를 측정하여 열전도도를 구할 수 있다. 도료가 코팅된 샘플에 대해서는 도료층을 일부 떼어내 비열을 측정하고, 밀도를 구한 후, 도료층의 열전도도가 2-layer 법으로 장비 내장 소프트웨어로 계산된다, 이때 Al 기판의 열확산계수, 비열, 밀도는 미리 측정한 bare Al plate의 값을 적용하였다. 실험 결과를 Table 1에 정리하였다. 흑연과 탄소나노튜브를 혼합한 충전제를 함유한 아크릴 복합체 박막에서 측정된 열전도도는 보통 고분자 재료의 열전도도 값의 상한 영역에 육박하는 값이며, 충전제 함량이 증가할수록 열전도도가 증가하는 경향을 보이고 있다.

  • PDF

Preparation and characterization of SRF(Solid Refuse Fuel) using heavy oil fly ash (중유회를 활용한 고형연료 제조 및 특성)

  • Min, Hong;Cho, Sung-su;Seo, Minhye;Lee, Soo-Young;Choi, Changsik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.83-90
    • /
    • 2019
  • In this study, the characteristics of the SRF (Solid Refuse Fuel) prepared by blending each of the additives (citrus peel, waste wood, coal) in the heavy oil fly ash, evaluating the heavy oil fly ash recyclability. Recycling SRFs were fabricated by pellet extruding method after blending the heavy oil fly ash and additives based on 30% moisture content. As a result, the formability of the SRFs was excellent under condition of blending heavy oil fly ash with coal or citrus peel and the highest calorific value was 4,274 kcal/kg at heavy oil fly ash mixed with coal. Therefore, the formability and calorific value were improved when the heavy oil fly ash was mixed with coal(20 wt%) at 30% moisture content. From these results, the applicability of SRFs with additives was confirmed by using the heavy oil fly ash from J thermal power plant.