천연 토양 속에 많이 존재하는 철광석인 goethite, magnetite와 과산화수소수를 이용해 펜톤 유사 반응(Fenton-like oxidation)을 유도하여 디젤과 등유가 같은 중량 비율로 오염된 silica sand를 회분식 시스템으로 처리하여 보았다. 과산화수소수의 pH(3, 7) 농도(0%, 1%, 7%, 15%, 35%), 초기 오염물의 농도(0.2, 0.5, 1.0 g-오염물/kg-모래), 그리고 철광석(iron minerals)의 양(0, 1, 5 wt % magnetite 또는 goethite)을 달리하여 반응조건들을 조사하였다. Silica sand-철광석-$H_2O_2$ system에서의 오염물의 분해는 잔존 Total Petroleum Hydrocarbon(TPH)의 농도를 분석하여 확인하였다. 최적 실험 pH는 3이었고, 철광석이 철공급원으로 사용된 경우가 $FeSO_4$ 용액이 철공급원으로 사용된 경우보다 과수의 소모가 적어서 더 효율적이었다. 초기 오염물의 농도 1.0 g-오염물/kg-모래(5 wt % magnetite)에 과산화수소수의 농도를 0%, 1%, 7%, 15%, 그리고 35%로 달리하여 본 결과 8일후 각각 0%, 24.5%, 44%, 50%, 그리고 70%의 TPH 감소를 보였다. 같은 오염물 농도하에서 15%의 과산화수소를 사용하고, 철광석의 양이 0, 1, 5, 10 wt %로 변화되었을 경우, 오염물의 제거량은 magnetite의 사용시 각각 0%, 33.5%, 50%, 60%, goethite의 사용시는 각각 0%, 29%, 41%, 53%이었다. Magnetite system은 iron(II)과 iron(III)이 공존하며, 미량의 철성분이 용해되므로 goethite system보다 오염물의 분해가 더 많이 일어나는 것으로 보인다. 그러나 용해된 철성분은 철광석 표면에 침전물의 형태로 쌓이게 되어 철광석 표면의 전자교환능력을 감소시키고 과산화수소수를 quenching시키는 것으로 사려된다. 그리하여 goethite system에서 과산화수소수가 적게 소모되어 magnetite system보다 나은 처리효율을 가지는 것으로 나타났다. 토양을 shaker를 이용하여 혼합시킨 결과 오염물의 제거량이 magnetite의 경우 41%, goethite의 경우 30%만큼 증가하였다. 이 연구의 결과를 통하여 볼 때 천연토양속에는 magnetite와 goethite같은 철광석이 함유되어 있으므로 별도의 철성분 첨가없이 과산화수소수의 처리만으로도 석유로 오염된 토양의 in-situ 또는 ex-situ한 처리가 가능할 것으로 보인다.