• Title/Summary/Keyword: 혼합액적

Search Result 97, Processing Time 0.034 seconds

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Development of Hybrid Model for Simulating of Diesel Spary Dynamics (디젤분무의 모사를 위한 혼합 모델의 개발)

  • 김정일;노수영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

Experimental Study of Thermo-Flow Field in a Model Gas Turbine Combustor with Various Swirl Conditions (스월변화에 따른 모형 가스터빈 연소기의 열유동장의 실험적 연구)

  • Ryu, Song-Youl;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.70-76
    • /
    • 2002
  • Characteristics of kerosine spray combustion were investigated at various swirl condition. PDPA(Phase Doppler Particle Analysis) was used to measure the droplet sizes and velocities. R-type(Platinum vs. Platinum-13%rhodium) thermocouple was used to measure the temperature of combustion flow field inside model combustor. A visualization of spray and flame was performed with still camera. As swirl number increases due to increase of swirl vane angle, the spray and the flame were developed to radial direction rapidly. When swirl number is small, the configuration of flame is cone type, but swirl number is large, the configuration of flame is cylindrical type due to enhanced mixing by the transport of swirl momentum.

The synthesis of silver powders with narrow particle distribution and spherical shape prepared by spray pyrolysis (분무열분해법에 의한 입자분포가 좁은 구형의 은 분말 제조)

  • 이교광;강윤찬;김중현;박희동
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.112-112
    • /
    • 2003
  • 은분말은 전자 산업에 있어 후막 도체 페이스트의 제조를 위해 사용되어지고 있다. 후막 페이스트는, 기재상에 스크린 프린트되고, 전도성의 회로 패턴을 형성한다. 이러한 회로는, 다음에 건조, 소성되고 액체 유기 비이클을 휘발 시키고, 그리고 은 입자를 소결시킨다. 프린트 회로 기술은 점점 고밀도이면서 더욱 정밀한 전자 회로를 요구하고 있다. 이러한 요건에 적합하기 위하여 도선은 폭이 점점 좁아지고, 선의 사이의 거리가 점점 작아지고 있다. 고밀도가 조밀하게 꽉 찬 좁은 선을 위하여 은 분말은 가능한 크기가 단일하고 구형의 형태를 가져야 한다. 현재 금속 분말을 제조하는 방법으로는 화학적 환원법, 무화 또는 분쇄, 열분해법등의 물리적 과정 및 전기 화학적 과정 등이있다. 본 연구에서는 입도 분포가 좁은 구형의 은 분말을 제조하기 위하여 기상법의 하나인 분무열분해법을 도입하였다. 또한 싸이클론을 사용하므로 큰 액적들을 걸러 입도 분포를 줄였다. 은 분말의 프리커서로써는 AgNO$_3$를 사용하였고 반응기의 온도는 $700^{\circ}C$에서 100$0^{\circ}C$까지 변화시켰으며 운반기체로써는 5%H$_2$ 혼합가스로 20L/min에서 80L/min 변화시켜 은 분말을 제조하였다. 또한 용액의 농도는 0.2M에서 1.0M까지 변화시켰다. 용액의 농도가 0.2M이고 운반기체의 유랑이 40L/min일 경우 완전한 은 상이 관찰되었고, 입자의 크기는 약 600nm였다.

  • PDF

A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel (바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안)

  • Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

Preparation of α-Al2O3 Nanoparticles by flame Spray Pyrolysis (ESP) of Microemulsion (마이크로에멀전의 화염분무열분해(ESP)에 의한 α-알루미나 나노입자의 제조)

  • 이상진;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • Nano-sized a-alumina with a narrow distribution was prepared by using Flame Spray Pyrolysis (FSP). The microemulsion of water in oil (W/O) was prepared to make ultrafine droplets for FSP process. Kerosene (fuel) as a continuos phase and Al(NO$_3$)$_3$$.$9$H_2O$ (oxidizer) aqueous solution as a dispersed phase were prepared for microemulsification. The microemulsion with dispersion stability was obtained by adjusting the composition of 80 vol% kerosene, 10 vol% aqueous solution, and 10 vol% emulsifying agent. Microemulsion was sprayed onto the flame by using two-fluid nozzle spray gun under the condition of 0.03 ㎫ air pressure. The synthesized products were $\alpha$-alumina phase with the size of 20 to 30 nm.

A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System (커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구)

  • Kim, W.I.;Woo, S.C.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.

A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array (일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구)

  • Park, Jeong;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF

Analysis of the Theoretical Performance Characteristics for Methane-fuel Bipropellant Rocket Engine (메탄을 연료로 하는 이원추진제 로켓엔진의 이론성능특성 분석)

  • Kim, Jong Hyun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • A set of preliminary design parameters for the bipropellant rocket engine using liquid methane-fuel as green propellant were derived through a theoretical performance analysis. Chemical equilibrium analysis utilizing CEA was conducted for the prediction of combustion performance: combustion characteristics according to the O/F ratio and chamber pressure variation were investigated. For a determination of chamber-characteristic length, the vaporization time of fuel-droplet with various performance parameters was calculated by applying Spalding's 1-D droplet vaporization model. Finally, the preliminary design specification of methane-bipropellant rocket engine, which is to be performance-tested under the ground firing condition, was proposed.

Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle (Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.