• Title/Summary/Keyword: 혼합모래

Search Result 354, Processing Time 0.025 seconds

Commercialization of Patented Technology on Turfgrass Production in Korea (잔디 생산 특허기술의 현황 및 산업화)

  • Youn, Jeong-Ho;Lee, Jae-Pil;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.107-118
    • /
    • 2006
  • This study was carried out to introduce a couple of commercialized patented technologies in the area of turfgrass production. All sod production related patents in Korea during the period from Dec. 20, 1948 to Dec. 30, 2005 were reviewed. Details of two patents (patent No. 0434389 and 0478194) were included. The results are summarized as follows: 1. One of the domestic patents on sod production was the technique using natural and plastic films. Information on topsoil mixtures was also reviewed form foreign patents. 2. Patented multi-purpose sowing equipment can evenly mix soil, sand, fertilizer and other soil conditioners with seed, stolen and rhizome of turfgrass. 3. Patent on cool-season turfgrass sod production provide topsoil mixture combination and mixing ratio for sports field, landscape area and roof garden.

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.

Interpretation of Material Characteristics and Making Techniques for Lime-Soil Mixture on Tomb Barrier of Pyeongtaek Gungri Site in Joseon Dynasty (평택 궁리유적 조선시대 회곽묘의 재료학적 특성 및 제작기법 해석)

  • Kang, San Ha;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.49-65
    • /
    • 2018
  • The lime-soil mixture on tomb barrier (LSMB) is a type of tomb in Joseon Dynasty, which made with so-called 'Sammul' (three material compound) that mixture of lime, fine sand and yellow ocher. This study divided the tombs of the Gungri Site from Joseon Dynasty with layered wall and integrated wall according to the manufacturing types, and investigated on the basis of analysis to material characteristics and making techniques. Analytical samples were classified with lime-soil mixtures and soils, and interpreted the mixing characteristics of Sammul based on types of tomb barrier. The tomb barrier which is directly effect to control the inner environment was made with high content of lime. But the finishing or bottom layer were made with low content of lime. Overall the LSMB with integrated wall has higher content of lime and physical property than the LSMB with layered wall. The soil which was compounded as a Sammul and collected near the Gungri Site had similar with mineralogical and geochemical characteristics. Therefore, it is presumed that the fine sand and yellow ocher that made as a Sammul, were used with soil that was distributed around the site. Meanwhile, large scale limestone quarry is distributed near the site. Especially, Gungri Site has a possibility of material supply through water transport, due to the sea route from Asan bay is connected near the site. Thus, there is the possibility of transportation of lime materials from nearby quarry.

A Study on Durability Test of Cemented Soils (시멘트 혼합토의 내구성 평가법에 관한 연구)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.79-86
    • /
    • 2012
  • Cemented soils have been used for subbase or base materials of roads, backfill materials of retaining walls and cofferdam. Such cemented soils can be degraded due to repeated wetting and drying or various weathering actions. Unlike rocks, a standard method was not defined for evaluating the durability of cemented soils. In this study, a slaking durability test and an ultrasound cleaner were used for developing a new durability test method for cemented soils. For durability tests, cemented sands with different cement ratios (4, 6, 8, and 12%) with cylindrical specimens were prepared and then air cured or under-water cured for three days. Three-day-cured specimens were dried for one day and then submerged for one day before testing. The weight loss after the slake durability test or ultrasonic cleaner operation for 10 or 20 min was measured and used for assessing durability. When a cement ratio was 4%, the weight loss from ultrasonic cleaner test was 7-25% but that from slake durability test was as much as 30-60%. For specimens with cement ratio of more than 8%, the weight loss was less than 10% from both tests. A durability index increased with increasing a cement ratio. The durability index of under-water cured specimen was higher than that of air cured specimen. The ultrasonic cleaner test was found to be an effective tool for durability assessment of cemented sands rather than the slake durability test.

Scientific Investigation for Conservation Methodology of Bracket Mural Paintings of Daeungjeon Hall in Jikjisa Temple (직지사 대웅전 포벽화 보존방안을 위한 과학적 조사)

  • Lee, Hwa Soo;Kim, Seol Hui;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.107-118
    • /
    • 2018
  • This report does studied for making the method of conserving bracket murals in Daeungjeon of Jikjisa Temple, through the scientific way. Results of evaluated the conservation status at the braket mural paintings, most serious damage is structural damage like cracks, breakage, and delamination. After optical investigation, a characteristic point wasn't found such as underdrawing or traces of a coat of paint. The ultrasonic examination speed by each wall painting was measured from about 195.8 m/s to 392.7 m/s, according to the location of the surface, and it was able to compare the surface properties according to the location. In Infrared-thermal image measurement shows that wall layer separation and paint layer delamination are closely detected, therefore it was able to judge of damage on the objective way. Material analysis revealed that the walls were made by sand and weathering soil. The wall layer combined sand with less than fine sand size by nearly 5:5, and the finishing layer was found to have mixed medium sand and fine sand at approximately 6:4 rates. However, In case of finishing layer, mixing ratios of sizes less than very fine sand were found to be significantly lower than wall. Therefore, it is estimated that the plysical damage such as the separation between the layers of the walls created in the braket mural paintings, is continuously caused by changes in the internal stresses and volume ratio caused by the density differences between the wall and the finishing layers.

Effect of Root Zone Cooling on Growth and Mineral Contents of Turfgrasses in Simulated Athletic Field during Summer Season (여름철 근권부의 냉온처리가 경기장 잔디의 생육 및 무기성분 함량에 미치는 영향)

  • 이혜정;송지원;구자형
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.4
    • /
    • pp.169-179
    • /
    • 2001
  • This study was conducted to determine the effect of root zone cooling on growth and quality of turfgrasses including Kentucky bluegrass (Poa pratensis L.‘Nuglade’), perennial ryegrass (Lolium perenne L.‘Accent’), tall fescue (Festuca arundinacea Schreb.‘Pixie’), and Japanese lawngrass (Zoysia japonica Steud.) in simulated athletic field during summer season in Korea. Mineral contents in clippings of turfgrasses grown at different soil mixtures and temperatures were also analyzed. Root zone cooling (approximately 4~6$^{\circ}C$ lower than that of untreated-control) resulted in good uniformity, little disease incidence and higher level of chlorophyll contents in cool-season turfgrasses. The effectiveness of root zone cooling in protecting disease incidence from high temperature stress was the most manifest in perennial ryegrass compared to others. Fresh clipping weight in treatment of root zone cooling was increased approximately 2 times in Kentucky bluegrass and perennial ryegrass, and 2.5 times in tall fescue compared to those of control. There was higher growth rate in a soil mixture composed of 80% peat moss +10% sand +10% soil (v/v/v) than in that of 80% pea moss +20% sand (v/v), Mineral contents of N, P, K, Ca, and Mg in clippings of three species of cool-season turfgrasses were significantly increased in treat-ment of root zone cooling but this was not found in Japanese lawngrass. Results showed that root zone cooling has a benefit in keeping good quality and growth of cool-season turfgrasses in sports field under supraoptimal ambient temperature during summer season.

  • PDF

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils (모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Chung, Sang-Yong;Yang, Sung-Il;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Slug/bail tests were conducted in sand layer (sbt-1 well), silty sand layer (sbt-2 well), and mixed sand and silty sand layer (sbt-3 well). Hydraulic conductivity and specific storage coefficient were estimated through slug/bail tests. Pore volumes of groundwater level drawdown zone for bail test were estimated by using hydraulic conductivity and specific storage coefficient. KGS model was most suitable interpretation method of slug/bail tests. Average hydraulic conductivity for slug/bail tests were estimated to be $6.65{\times}10^{-5}$ m/sec in sbt-1 well, $6.33{\times}10^{-6}$ m/sec in sbt-2 well, and $3.72{\times}10^{-5}$ m/sec in sbt-3 well. Average specific storage coefficient for slug/bail tests were estimated to be 0.0225 in sbt-1 well, 0.0177 in sbt-2 well, and 0.0259 in sbt-3 well. Dimensionless time and dimensionless wellbore storage were estimated by use of transmissivity, storativity, test time, and specification of test wells. And, dimensionless drawdown were selected by parameter ${\alpha}\;and\;{\beta}$ parameter from Cooper et al. (1967). Radius of influence were estimated by estimated dimensionless time, dimensionless wellbore storage, and dimensionless drawdown. The average radius of influnce for slug/bail tests were estimated to be 1.377 m in sbt-1 well, 1.253 m in sbt-2 well, and 1.558 m in sbt-3 well. Pore volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,636cm^3$ in sbt-1 well, $71,561cm^3$ in sbt-2 well, and $100,418cm^3$ in sbt-3 well. Pore volume excepted well volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,410cm^3$ in sbt-1 well, $71,353cm^3$ in sbt-2 well, and $100,192cm^3$ in sbt-3 well.

Hydrodynamic Dispersion Characteristics of Multi-soil Layer from a Field Tracer Test and Laboratory Column Experiments (현장추적자시험과 실내주상실험을 이용한 복합토양층의 수리분산특성 연구)

  • Kang, Dong-Hwan;Yang, Sung-Il;Kim, Tae-Yeong;Kim, Sung-Soo;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • This study analyzed for hydrodynamic dispersion characteristics of multi-soil layer (Silt and clay, Find sand, Coarse sand), data of a field tracer test on the multi-soil layer and data of laboratory column experiments on the samples on each soil layers. Through the analysis of permeability and flow, MS (Silt and clay) and FS (Fine sand), which were low effective porosity, were higher average linear velocity while CS (Coarse sand), which was high effective porosity, was higher hydraulic conductivity. Hydraulic conductivity function based on average soil particle diameter was assumed Y=$3.49{\times}10^{-8}e^{15320x}$ and coefficient of determination was 0.90. Average linear velocity function based on average soil particle diameter was assumed Y=$1.88{\times}10^{-7}e^{11459x}$ and coefficient of determination was 0.81. Longitudinal dispersivity function based on average soil particle diameter was Y = 0.00256$e^{5971x}$ and coefficient of determination was 0.98. According to the linear regression analysis of average linear velocity and longitudinal dispersivity, assumed function was Y = 21.7527x + 0.0063, and coefficient of determination was 0.9979. The ratio of field scale/laboratory scale was 54.09, it exhibited scale-dependent effect of hydrodynamic dispersion. Field longitudinal dispersivity (1.39m) was 7.47 times as higher than longitudinal dispersivity estimated by the methods of Xu and Eckstein (1995). Hydrodynamic dispersion on CS layer was occurred mainly by diffusion flow in the test aquifer.

Flow Behavior and Mixing Characteristics of Rice Husk/Silica Sand/Rice Husk Ash (왕겨/모래/왕겨 회재의 유동 및 혼합 특성 연구)

  • Kim, Bo Hwa;Seo, Myung Won;Kook, Jin Woo;Choi, Hee Mang;Ra, Ho Won;Yoon, Sang Jun;Mun, Tae Young;Kim, Yong Ku;Lee, Jae Goo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.533-542
    • /
    • 2016
  • We investigate fluidization characteristics of the mixture of rice husk, silica sand and rice husk ash as a preliminary study for valuable utilization of rice husk ash obtained from gasification of rice husk in a fluidized bed reactor. As experiment valuables, the blending ratio of rice husk and sand (rice husk: sand) is selected as 5:95, 10:90, 20:80 and 30:70 on a volume base. Rice husk ash was added with 6 vol% of rice husk for each experiment and air velocity to the reactor was 0~0.63 m/s. In both rice husk/sand and rice husk/sand/ash mixture, the minimum fluidization velocity (Umf) is observed as 0.19~0.21 m/s at feeding of 0~10 vol.% of rice husk and 0.30 m/s at feeding of 20 vol.% of rice husk. With increasing the amount of rice husk up to 30 vol.%, $U_{mf}$ can not measure due to segregation behavior. The mixing index for each experiment is determined using mixing index equation proposed by Brereton and Grace. The mixing index of the mixture of rice husk/sand and rice husk/sand/ash was 0.8~1 and 0.88~1, respectively. The optimum fluidization condition was found for the good mixing and separation of rice husk ash.