• Title/Summary/Keyword: 혼합마찰

Search Result 190, Processing Time 0.034 seconds

Shear Behaviour of Cemened River Sand (고결된 하상모래의 전단거동)

  • Jeong, Woo-Seob;Kim, Yung-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.35-45
    • /
    • 2007
  • In this research, artificially cemented sand which is made of a few portland cement and Nak-Dong river sand was researched closely. For providing the fundamental data which is needed in design and analysis of levee material, the shear behavior of cemented sands was investigated by drained triaxial test, and analyzed in accordance with the increase of cement content. The peak strength and elasitc modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation increased, cohesion intercetpt and friction angle increased with the increase of cement content and strain softening behavior appeared in stress-strain curve.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

A Study on the Load Bearing Characteristics Depending on Pile Construction Methods and Pile Load Test Methods Based on Case Analyses (사례분석에 기초한 말뚝시공법 및 재하시험방법에 따른 하중지지특성에 관한 연구)

  • Hong, Seok-Woo;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.5-21
    • /
    • 2012
  • In our country, in the case of traditional design of pile foundations, only a design depending on end bearing has been performed. However, through the load transfer measurement data that have been carried out for in-situ piles, it was known that skin frictional force was mobilized greatly. In this study, through the analysis of the load transfer test cases of driven steel pipe piles and large-diameter drilled shafts, load bearing aspects of pile foundation depending on pile construction methods and pile load test methods were established. The average sharing ratios of skin frictional force were independent of pile types, pile load test methods, relative pile lengths, pile diameters and soil types. Because the average sharing ratios were over 50%, the case pile foundations mostly behaved as a friction pile and the extremely partial case pile foundation behaved as a combined load bearing pile.

Estimation of Strength Parameter of Soil-NSS Mixture by Triaxial Compression Test (삼축압축시험을 이용한 NSS 혼합토의 강도정수 평가)

  • Oh, Sewook;Lee, Gilho;Kwon, Hyekkee;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.65-71
    • /
    • 2013
  • Despite of the various merits of soil pavement, it has not been widely adapted because portland cement was conventionally used as soil stabilizer to improve the mechanical properties such strength parameters. Recently, natural soil stabilizer(NSS) were developed and virtually adopted to several case of soil pavement construction under control of heavy metal pollution compared to cement-used cases. However, the application of natural soil stabilizer is not settled yet, and empirical design have been widely adopted. In this study, therefore, the strength parameter of soil-NSS mixture was estimated by some triaxial compression tests, CU-test. From the tests, the relationship between curing period and strength parameter such as internal friction and effective cohesion was examined. As a result, effective cohesion of dredged clay and granite soil increased as curing time is increased. However, internal friction is almost same result in all soil type used in this study.

A Study on Recycling Plan for the Dehydrated Sludge of Water Treatment Plant (탈수 처리된 정수장 슬러지의 재활용 방안 연구)

  • Chung Youn-In;Chang Yong-Chai;Choi Byoung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.107-113
    • /
    • 2006
  • Water treatment plant sludge occurred in sedimentation and inverse wash process is generally disposed by ocean dumping or reclamation after dehydration processing using mechanical or natural dry method. Recently, ocean dumping of sludge is limited actually by London Convention. Physical, chemical, and geotechnical characteristics of water treatment plant sludge were analyzed by experiments. The possibilities for recycling of the dehydration sludges as materials for covering sanitary landfill were examined. Experiments performed with sludges mixed with general soil to improved the sludge properties are the hydrometer analysis, the liquid and plastic limit test, the specific gravity test, the compaction test, and the unconfined compression test. The value of ${\gamma}_{dmax}$ is increased and OMC(Optimum Moisture Content) is lessened with mixed sludge. The value of maximum compressive strength and friction angle are increased and the cohesion is decreased with mixed sludge. The ratio between sludge and soil in mixed sludge was 3:7 and the strength of mixed sludge showed $3.6kg/cm^2$. These results satisfy the regulation of U.S. E.P.A regarding materials for covering sanitary landfill.

  • PDF

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

An Experimental Study on Bottom Ash for Utilization of Subbase Materials (저회의 성토재료 활용성에 대한 실험적 연구)

  • Jung, Sang-Hwa;Choe, Myong-Jin;Lee, Bong-Chun;Choi, Young-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, many researches on bottom ash which is produced in the burning process of power plant are actively performed for its utilization for soil-subbase materials. In this paper, bottom ashes from 5 different power plants are prepared and several tests including compaction, CBR, and tri-axial compression are carried out for mixed bottom ash and weathered soil considering 3 replacement ratio of 30%, 50%, and 70%. Through the tests, CBR result over 20 are evaluated without plastic property, which shows availability of subbase material. With higher increase in replacement ratio of bottom ash, CBR of mixed soil increases due to the higher mechanical performance of bottom ash. However, replacement effects of bottom ash on friction angle and cohesion are evaluated to be little since bottom ash plays a little role in rearrangement of mixed soil. Bottom ash with a good mechanical property is evaluated to have reasonable bearing capacity which shows a good property for subbase materials.

  • PDF

Mixing of Materials in FSW of Dissimilar Aluminum Alloys (이종 알루미늄의 FSW에서의 물질혼합에 관한 연구)

  • Hong, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • The mixing of two dissimilar aluminum alloys in friction stir welding (FSW) was investigated using etching. The results show that the materials from the retreating side mixed into the advancing side in rather narrow and elongated bands whereas the materials from the advancing side mixed into the retreating side in the form of thick bands and lobes. A computational method using smoothed particle hydrodynamics (SPH) is introduced as a way to properly describe the complex mixing behavior in FSW.

Gasoline-공기혼합가스의 최소 착화에너지에 관한 연구

  • 김경태;양희영;우인성;황명환
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.340-345
    • /
    • 2000
  • 석유류를 비롯한 가연성 액체는 물체간의 마찰작용에 의해 발생한 정전기 방전과 같은 작은 에너지에 의해서도 착화하는 일이 있다. 이러한 종류의 재해 사고에선 착화성이 높은 액체나 가스, 분진 등의 물적 피해뿐만 아니라 다수의 인명 피해를 부르는 일이 있다. 이 때문에 가연성액체의 충진 등에 있어서는 정전기에 의한 화재·폭발 등 사고발생의 위험성을 배려해서 대책을 세우는 것이 필요하다/sup (1)/.(중략)

  • PDF

그래핀 소재를 기반으로 하는 K-Propeller 모형 개발

  • 유장욱;정찬대;노창균
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.162-163
    • /
    • 2021
  • 그래핀수지로 기존에 황동(Ni-Al-Bronze) 프로펠러 대체 가능 제품의로 고가의 황동을 그래핀수지 특히 재생 플라스틱 활용으로 저가로 공급 가능하다. 또한, 재활용이 가능한 친환경 프로펠러임, 가벼운 소재를 이용하여 연료 효율 증대, 연료 효율을 향상시켜 연안해운 저탄소 실현, 마찰저항을 최소화하여 선박의 추진성능 개선, 해양생물 부착 방지(방오기능)를 통한 프로펠러 수명연장 기대, 프로펠러 검사 및보수 유지비용 절약 기대, 향후 폐기물에 그래핀을 혼합한 재생 자재로 활용 가능이 크다.

  • PDF