• Title/Summary/Keyword: 호흡센서

검색결과 146건 처리시간 0.025초

속도계측형 호흡기류센서에서 상승시간을 고려한 최고호기유량의 교정 기법 (Compensation of Peak Expiratory Air Flow Rate Considering Initial Slope in Velocity Type Air Flow Transducer)

  • 차은종;이인광;김성식;김완석;박경순;김원재;김경아
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.867-872
    • /
    • 2009
  • Peak expiratory flow rate(PEF) is one of the most important diagnostic parameters in spirometry. PEF occurs in a very short duration during the forced expiratory maneuver, which could lead to measurement error due to non-ideal dynamic characteristic of the transducer. In such case the initial slope of the flow rate signal determines the accuracy of the measured PEF. The present study considered this initial slope as a parameter to compensate PEF. The 26 standard flow rate signals recommended by the American Thoracic Society(ATS) were flown through the air flow transducer followed by simultaneous measurements of PEF and maximum transducer output$(N_{PEF})$. $N_{PEF}$-PEF satisfied a quadratic equation in general, however, two signals (ATS #2 and #26) having large initial slopes deviated from the fitting equation to a significant degree. The relative error was found to be in a linear relationship with the initial slope, thus, $N_{PEF}$ was appropriately compensated to provide accurate PEF with mean relative error less than only 1%. The 99% confidence interval of the mean relative error was less than a half of the error limit of 5% recommended by ATS. Therefore, PEF can be very accurately determined by compensating the transducer output based on the initial slope, which should be a useful technique for air flow transducer calibration.

전기용량성 섬유 압력센서를 이용한 호흡측정 시스템 (Respiration Measurement System using Textile Capacitive Pressure Sensor)

  • 민세동;윤용현;이충근;신항식;조하경;황선철;이명호
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we proposed a wearable respiration measurement system with textile capacitive pressure sensor. Belt typed textile capacitive pressure sensor approach of respiration measurement, from which respiration signatures and rates can be derived in real-time for long-term monitoring, are presented. Belt typed textile capacitive pressure sensor has been developed for this measurement system. the distance change of two plates by the pressure of motion has been used for the respiration measurement in chest area. Respiration rates measured with the textile capacitive pressure sensor was compared with standard techniques on 8 human subjects. Accurate measurement of respiration rate with developed sensor system is shown. The data from the method comparison study is used to confirm theoretical estimates of change in capacitance by the distance change. The current version of respiratory rate detection system using textile capacitive pressure sensor can successfully measure respiration rate. It showed upper limit agreement of $3.7997{\times}10^{-7}$ RPM, and lower limit of agreement of $-3.8428{\times}10^{-7}$ RPM in Bland-Altman plot. From all subject, high correlation were shown(p<0.0001). The proposed measurement method could be used to monitor unconscious persons, avoiding the need to apply electrodes to the directly skin or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range and quality of the rate-finding, broadening the potential application areas of this technology.

허리와 손목의 가속도 센서를 이용한 신체활동 에너지 소비량 예측 알고리즘 구현 (Implementation of Physical Activity Energy Expenditure Prediction Algorithm using Accelerometer at Waist and Wrist)

  • 김도윤;정유석;전소혜;강승용;배윤형;김남현
    • 재활복지공학회논문지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문에서는 3축 가속도 동작 감지기를 이용하여 신체활동 에너지 소비량 예측 알고리즘을 구현 하였다. 피험자 33명(남성: 15, 여성: 18명)을 대상으로 트레드밀에서 호흡가스분석기, 3축 가속도 동작 감지기(피트미터)를 허리와 손목에 착용 후 2 km/h ~ 11 km/h 까지 각 단계별 2분 수행 후, 1 km/h 씩 증가 시키면 실험을 진행하였다. 3축 가속도 동작 감지기의 x, y, z축 출력 값을 하나의 대표 값으로 처리하는 신호벡터크기(Signal Vector Magnitude: SVM)와 산소소비량과의 회귀분석을 통하여 신체활동 에너지 소비량 예측 알고리즘을 구현 하였다. 허리, 손목, 허리와 손목의 3축 가속도 동작 감지기 착용 위치에 따라 알고리즘을 구현하고 각각의 알고리즘 별로 비교하여 신체활동의 특성에 따라 선택적으로 이용할 수 있도록 구현 하였다.

  • PDF

와류 챔버를 사용하는 호흡기류 센서 (Air flow transducer with turbulence chamber)

  • 이인광;최성수;김군진;장종찬;김성식;김경아;이태수;차은종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1971-1972
    • /
    • 2008
  • Cardiopulmonary resuscitation(CPR) is an important clinical technique performing artificial ventilation and chest compression on a patient under emergent situation before arriving in hospital. Since the quality of CPR significantly affects the survival rate, it would be of great advantage to monitor respiration in real time during CPR. However, currently applied respiratory air flow transducers are difficult to apply with sensing elements in the middle of the flow axis. The present study developed a new turbulent air flow transducer conveniently applicable to CPR. Abrupt changes in diameter of the flow tube generated turbulence in air flow, thereby pressure difference was obtained to estimate the air flow rate, with no physical object on the flow plane. Expiration and inspiration were separated by the direction of the pressure difference, resulting in good symmetry. Pressure-flow relationship was tested on a quadratic model, which provided accurate enough estimation results. Therefore, the present turbulent air flow transducer seemed appropriate to monitor respiration during CPR.

  • PDF

코골이용 압전센서를 이용한 수면무호흡 검출에 관한 예비 연구 (Sleep Apnea Detection Using a Piezo Snoring Sensor: A Pilot study)

  • 에르덴바야르;이효기;김호중;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권4호
    • /
    • pp.75-80
    • /
    • 2014
  • This paper proposed a method that can automatically classify sleep apnea by using features extracted from pulse rate variability(PRV) signals induced from piezo snoring sensor for patients with obstructive sleep apnea(OSA). We have extracted eight features(NN, SDNN, RMSSD, NN10, NN50, LF, HF and LF/HF ratio) based on time and frequency analyses of PRV. Sleep apnea was classified by a linear discriminant analysis(LDA). A performance was evaluated using snore recordings from 13 patients with OSA (ages: $54.5{\pm}10.5$ years, body mass index: $26.3{\pm}2.5kg/m^2$, apnea-hypopnea index: $19.2{\pm}6.0/h$). The sensitivity and specificity were $78.9{\pm}0.9%$ and $78.9{\pm}0.9%$ for training set and $77.7{\pm}10.9%$ and $79.0{\pm}2.8%$ for test set, respectively. Our study demonstrated the feasibility of implementing a piezo snoring sensor based on a portable device as a simple and cost-effective solution for contributing to the OSA screening.

PVDF 필름 기반 센서를 이용한 정상인 및 폐쇄성 수면 무호흡증 환자에서의 무구속적인 렘 수면 모니터링 (Unconstrained REM Sleep Monitoring Using Polyvinylidene Fluoride Film-Based Sensor in the Normal and the Obstructive Sleep Apnea Patients)

  • 황수환;윤희남;정다운;서상원;이유진;정도언;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권3호
    • /
    • pp.55-61
    • /
    • 2014
  • In sleep monitoring system, polysomnography (PSG) is the gold-standard but previous studies revealed that attaching numerous amount of sensors disturb sleep during the test which is the fundamental disadvantage of PSG. We suggest an unconstrained rapid-eye-movement (REM) sleep monitoring method measured with polyvinylidene (PVDF) film-based sensor for the normal and the obstructive sleep apnea (OSA) patients. Nine normal subjects and seventeen OSA patients have participated in the study. During REM sleep, rate and variability of respiration are known to be greater than in other sleep stages. Based on this phenomena, respiratory signals of participants were unconstrainedly measured using the PVDF-based sensor with the PSG and REM sleep were extracted from the average rate and variability of respiration. In epoch-by-epoch REM sleep detection, proposed method classified REM sleep with an average sensitivity of 72.3%, specificity of 92.5%, accuracy of 88.9%, and kappa statistic of 0.60 compared to the results of PSG. Student's t-test showed no significant difference between the results of normal and OSA group. This method is potentially applicable to REM sleep detection in homing environment or ambulatory monitoring.

인공심폐소생술에 활용 가능한 호흡기류센서 (Respiratory Air Flow Transducer Applicable to Cardiopulmonary Resuscitation Procedure)

  • 김경아;이인광;이유미;유희;김영일;한상현;차은종
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.833-839
    • /
    • 2013
  • Cardiopulmonary resuscitation (CPR) is performed by thoracic compression and artificial ventilation for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are facing the whole area perpendicular to the flow axis. The present study developed a new air flow transducer conveniently applicable to CPR. Specially designed "sensing rod" samples the air velocity at 3 different locations of the flow cross-section, then transforms into average dynamic pressure by the Bernoulli's law. The symmetric structure of the sensing holes of the sensing rod enables bi-directional measurement simply by taking the difference in pressure by a commercial differential pressure transducer. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구 (Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor)

  • 민세동;김진권;신항식;윤용현;이충근;이정환;이명호
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Cow Residual Feed Intake(RFI) monitoring and metabolic abnormality prediction system using wearable device for Milk cow and Beef

  • Chang, Jin-Wook;Kwak, Ho-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권10호
    • /
    • pp.139-145
    • /
    • 2021
  • 본 논문에서는 소의 사료 취식량(Feed Intake), 반추(Rumination), 발정기(In Heat) 모니터링 기술을 이용하여, RFI(Residual Feed Intake) 모니터링 및 신진대상 이상을 예측하는 웨어러블 디바이스 및 PC용 웹과 스마트폰 어플리케이션을 이용한 모니터링 시스템을 설계하고 구현하였다. 본 시스템의 개발로 농장주는 경제적 효율성의 증가가 기대된다. 사료 섭취량을 분석하면, 소의 체중에 근거한 추천 사료량과 소가 섭취하는 사료량과의 차이를 확인할 수 있으며, Metabolic disorder(신진대사 이상)에 대한 조기 발견이 가능할 것으로 예상된다. 본 논문의 결과물을 사용하는 농장주는 가장 효율적인 성과를 나타내는 소를 구별할 수 있으며, 소의 표피(목)에 부착하는 웨어러블 장치로부터 입력되는 6축 모션 센서 신호와 웨어러블 장치에 부착된 마이크를 통해 입력되는 소의 목넘김 소리를 통해서 소의 반추와 사료섭취량을 측정할 수 있다. 향후에는 심박, 호흡 등의 추가적인 생체신호를 측정할 수 있도록 개선 작업을 진행할 예정이다.

심탄도와 인공지능을 이용한 혈당수치 예측모델 연구 (The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence)

  • 최상기;박철구
    • 디지털융복합연구
    • /
    • 제19권9호
    • /
    • pp.257-269
    • /
    • 2021
  • 논문은 심탄도(BCG, Ballistocardiogram) 센서를 이용하여 생체신호 데이터를 비침습, 무구속적인 방식으로 수집하고, ICT 기술과 고성능 컴퓨팅 환경에서 인공지능 기계학습 알고리즘을 활용하여 데이터 기반 혈당 예측 알고리즘 모델 개발 및 검증하는 방법을 제시하고 연구하는 것이다. 혈당수치 예측모델은 MLP 아키텍처에 입력노드는 심박수, 호흡수, 심박출량, 심박변이도, SDNN, RMSSD, PNN50, 나이, 성별이며, 은닉층 7개를 사용하였다. 실험 결과는 5회 실험한 학습데이터의 평균 MSE, MAE 및 RMSE 값은 각각 0.5226, 0.6328 및 0.7692이며 검증데이터 평균 값은 각각 0.5408, 0.6776, 0.7968이었으며, 결정계수(R2) 수치는 0.9997의 결과를 보였다. 데이터를 기반으로 한 혈당수치를 예측하는 모델을 표준화하고 데이터셋 수집과 예측 정확성을 검증하는 연구가 계속적으로 진행된다면 비침습 방식의 혈당 수준 관리에 활용될 수 있을 것으로 사료된다.