• Title/Summary/Keyword: 호우규모

Search Result 456, Processing Time 0.032 seconds

Development of Water Risk Management Platform for Indonesia Area (인도네시아 물 재해 관리 플랫폼 개발과 적용성 평가)

  • Park, Dae Hee;Park, Joo Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.381-381
    • /
    • 2019
  • 동남아시아의 급격한 도시인구 증가는 도시화로 파생되는 제반문제를 유발하고 있으며 특히 집중호우와 홍수배제 시설의 부족 및 유관시설의 정보관리체계 부재는 홍수 피해규모를 가중시키고 있다. 인도네시아의 경우 물 재해 관리기관 간의 정보공유체계 부재로, 홍수로 인한 문제해결에 대하여 효과적인 대응이 어려운 실정이다. 주요 물 관리 기관인 유역관리청(BBWS)의 경우 조기홍수경보시스템을 보유하고 있으나 단순 수문현황 모니터링에 국한되어 운영되고 있다. 이에 본 연구에서는 홍수피해를 최소화 할 수 있는 동남아시아 맞춤형 물 재해 관리 클라우드 플랫폼을 개발하여 비구조적 홍수 문제해결의 매개체로 활용하고자 한다. 기본적인 유역 수문현황 모니터링과 함께 댐, 보, 배수문 및 펌프장 등 홍수방어시설물의 운영현황 정보, 홍수상황분석, 홍수위험지도 등 종합적인 물 재해 정보를 제공하고 사전에 홍수위험 지역을 분석하여 유관기관과 공유할 수 있는 물 재해 관리 의사결정지원시스템을 개발하고자 한다. 기본적인 정보관리 체계화를 위하여 인도네시아의 다양한 물 재해 관련기관에서 보유하고 있는 자료들의 통합 클라우드 DB관리 시스템을 구축하였다. 연구대상지역은 인도네시아 수도인 자카르타의 Pesanggrahan유역과 인근 Batam섬 Baloi유역을 선정하였으며 대상 유역의 수문, 기상자료 및 GIS 정보수집은 공동연구기관인 인도네시아 공공사업부 수자원청(MPWH)과 주요 물 관리기관인 유역관리청(BBWS)의 협조를 통하여 진행하였다. 수집된 자료들은 관계형 데이터베이스 관리시스템인 MySQL을 사용하여 통합 물 재해 정보 데이터베이스를 구축하였으며 완성된 데이터베이스의 정보제공 및 공유시스템은 웹기반 인터페이스를 통해 관리되도록 설계하였다. 홍수유출 해석을 위한 분석 엔진은 K-water의 홍수분석 시스템인 FAS를 이용하였다. FAS의 홍수분석모형인 COSFIM과 수리모형인 Fldwav를 연계하는 데이터 분석 플랫폼을 완성하였으며 인도네시아 현지 조건에 부합하는 홍수분석 시스템으로 Customizing과정을 수행하였다. 또한 FAS의 PC기반 시뮬레이션 형식을 DB 연계형 웹서비스 방식으로 연동되도록 개량하였으며 추후 SaaS형 물 재해 분석시스템으로 전환할 수 있는 개발환경을 확보하였다. 개발된 물 재해 분석 플랫폼(WRMP)을 활용하여 인도네시아 공동연구기관과의 협의를 통해 물 재해 관리 시나리오를 수립하고 그 대안을 제시하였으며, 적용 시나리오별 홍수피해 저감 효과를 분석하였다. 또한 향후 방재시설물까지 연계하여 운영효과를 분석할 수 있도록 구조화하였다. 개발된 물 재해 관리 시스템은 개선된 정보처리 및 분석시스템을 활용하여 종합적인 물 재해정보를 제공하고, 사전에 홍수위험 지역을 분석하여 유관기관과 공유할 수 있는 물 재해 관리 의사결정 지원시스템으로써 유용하게 활용될 수 있을 것이다.

  • PDF

A Study on the Improvement of Legislation on Management of Compound Coastal Disasters (해안가 복합재해 관리를 위한 법률 현황 및 개선방향)

  • Jang, Ahreum;Kim, Sunhwa;Lee, Moonsuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.845-857
    • /
    • 2020
  • Compound coastal disasters are a type of natural disaster featuring both internal and external flooding due to rises in sea-level, torrential rains, typhoons, and tsunamis. The, incidence and scale of damage from such disasters is increasing. This aim of this study was to review the current laws and systems managing the phenomenon of the coastal complex disaster, and to derive recommendations for improvements to manage and prevent them. In this study, the Framework Act on the Management of Disasters and Safety, the Countermeasures against Natural Disasters Act, the National Land Planning and Utilization Act, the Coast Management Act, the River Act, and the Sewerage Act were reviewed, with focus on the district-zoning system designated by ministries for the management of natural disasters along the coast. Through a comparison of the purpose and nature of the laws, spatial scope, and management resources, it was judged that it would be desirable to comprehensively manage compound coastal disasters based on the Countermeasures Against Natural Disasters Act. In order to overcome the limitations of the current system and to derive specific measures to improve laws and systems, a questionnaire survey on detailed factors was conducted targeting experts in natural disaster management. The results indicated that it is necessary to improve the current system or introduce a new system for the management of coastal complex disasters, with integrated management of land and sea areas through the installation and operation of integrated decision-making governance by related ministries such as MOIS, MOLIT, MOF, and ME.

Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform (구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구)

  • Park, Jongsoo;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1761-1775
    • /
    • 2022
  • Due to unpredictable climate change, the frequency of occurrence of water-related disasters and the scale of damage are also continuously increasing. In terms of disaster management, it is essential to identify the damaged area in a wide area and monitor for mid-term and long-term forecasting. In the field of water disasters, research on remote sensing technology using Synthetic Aperture Radar (SAR) satellite images for wide-area monitoring is being actively conducted. Time-series analysis for monitoring requires a complex preprocessing process that collects a large amount of images and considers the noisy radar characteristics, and for this, a considerable amount of time is required. With the recent development of cloud computing technology, many platforms capable of performing spatiotemporal analysis using satellite big data have been proposed. Google Earth Engine (GEE)is a representative platform that provides about 600 satellite data for free and enables semi real time space time analysis based on the analysis preparation data of satellite images. Therefore, in this study, immediate water disaster damage detection and mid to long term time series observation studies were conducted using GEE. Through the Otsu technique, which is mainly used for change detection, changes in river width and flood area due to river flooding were confirmed, centered on the torrential rains that occurred in 2020. In addition, in terms of disaster management, the change trend of the time series waterbody from 2018 to 2022 was confirmed. The short processing time through javascript based coding, and the strength of spatiotemporal analysis and result expression, are expected to enable use in the field of water disasters. In addition, it is expected that the field of application will be expanded through connection with various satellite bigdata in the future.

Analysis of Impulse Wave Characteristics Generated by Landslide Models with Various Mass Ratio : Focus on Wave Amplitude (질량비 변화에 따른 산사태 모형으로 인해 생성되는 충격파의 특성분석 : 파진폭을 중심으로)

  • Hanwool Cho;Hojin Lee;Sungduk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • Impulse waves generated by landslides near water bodies can lead to fatal damage to human life and surrounding infrastructure. These impulse waves are generally called landslide-impulsed waves and occur without being limited to a specific area. Recently, localized torrential rains have frequently occurred due to the influence of abnormal weather, both the frequency and scale of landslides occurring in Korea are increasing. Therefore, in this study, the experiments were conducted according to the mass ratio of the landslide models, and among the characteristics of the generated landslide-impulse waves. And the wave amplitude was observed and analyzed. In this study, a total of 75 experiments were conducted by repeating the experiment 5 times for 15 cases with mass ratios of 5 landslide models and 3 types of slope angles. As a result of experiments with different mass ratios of landslide models, if the landslides have the same initial energy, the size of the landslide-impulse waves generated by mixing granular and block forms is higher than the size of the landslide-impulse waves generated by pure granular and block landslides. It is analyzed that the size may be larger.

Plant Cultivation System using Arduino (아두이노를 활용한 식물재배 시스템에 대한 연구)

  • Kim, Minju;Park, jin Woo;Jang, Donghwan;Kim, Sihyun;Yoon, Hosik;Lee, Sungjin;Moon, Sangho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.386-388
    • /
    • 2021
  • According to data from the World Meteorological Organization (WMO) in 2019, the global average temperature between 2015 and 2019 increased by 1.1℃ compared to the pre-industrial period (1850-1900). If the average temperature rises by 1.5℃, the occurrence of natural disasters such as extreme high temperatures, heavy rains and droughts will increase, and this change will intensify depending on the speed and size of warming. Due to the effects of global warming, global surface temperatures have gradually risen, and tropical fruits, which could only be grown in tropical regions, can be seen in Korea. According to the 5th report released by the IPCC of the Intergovernmental Panel on Climate Change under the United Nations, the world's average temperature will rise 3.7 degrees Celsius at the end of the 21st century (2081-2100). If the temperature rises gradually, it is believed that Korea's current cultivation area, which can produce good quality fruit, could be turned into an unfavorable area in the future. This paper aims to develop a plant cultivation system that utilizes Arduino to provide a customized environment for the growth of plants desired by growers.

  • PDF

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF

Calculation of high discharge under hydrological conditions with probability frequency - Focusing on the Seolmacheon catchment - (확률빈도를 갖는 수문조건에서의 고유량 산정 - 설마천 유역을 중심으로 -)

  • Kim, Dong Phil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.385-385
    • /
    • 2021
  • 하천에서 실제로 유속 2.0m/s 이상 발생할 시 유량측정은 매우 급변하는 유속과 수위변화에 따른 측정값의 불확실성, 운영적인 측면에서의 시·공간적 한계 등으로 고유량에 대해 정확한 유량을 산정하기 어려운 실정이다. 그리고 국가하천은 최소 80년 빈도 이상, 지방하천은 최소 50년 빈도 이상의 확률강우량 채택을 통해 고유량에 해당하는 계획홍수량을 산정하고 있으나, 실제로 높은 호우의 빈도는 쉽게 발생하지 않아 유량측정성과가 부재하거나 매우 극소수에 불과한 상황이다. 따라서 유량측정성과는 대상하천의 계획홍수량(계획홍수위) 이하의 수준, 즉 중규모 수위 이하의 구간에서 대부분의 성과를 가지고 있으므로 고유량 산정은 고수위 외삽추정식에 의존할 수밖에 없다. 고수위 외삽추정은 대체로 기 유량측정성과(h, q)와 통수단면적(AD1/2) 자료를 이용하는 Stevens 방법을 주로 이용하며, 이 방법은 하폭에 비해 수심이 비교적 작은, 얕은 하천과 기 유량측정성과가 추정하려는 고수위 구간에 근접한 경우에 적용성이 매우 용이하다고 할 수 있다. 설마천 유역 전적비교 수위관측소의 경우는 수위 4.110m까지 최대로 통수할 수 있으며, 하폭은 24.230m, 관측 최고수위는 3.194m, 유량측정성과 최대수위는 1.613m(40.303m3/s)이다. 설마천 유역에 대해 Stevens 방법을 적용하는 경우 위 조건을 만족하지 않으므로 다른 방법으로의 접근이 필요하다. AMC-III 조건의 선행강수량과 지속기간 1시간을 갖는 최대강우강도별 관측도달시간 자료를 통해 관계식을 유도하였으며, 강우 빈도해석의 결과인 지속기간 1시간의 빈도별 강우강도에 해당하는 도달시간을 유속으로 환산하는 과정을 거쳤다. 그 결과 유속은 1.808m/s(2년 빈도_43.3mm)~4.254m/s(500년 빈도_101.9mm)이며, 기 유량측정성과의 결과인 수위, 통수단면적, 유속, 유량, 최대강우강도(86.1mm_80년 빈도)가 발생했을 때의 해당 유속(도달시간 환산값), 수위, 통수단면적을 통해 최종적으로 빈도(년)별 유속, 수위, 유량을 결정하였다. 한국하천일람(2018)에서 제시된 설마천 전체 유역의 80년 빈도 계획홍수량(315m3/s, A=17.59km2) 값은 전적비교 수위관측소(A=8.48km2)와 직접적인 비교는 어렵지만, 유역면적비(0.482)를 적용한 추정된 계획홍수량은 약 152m3/s 볼 수 있다. 상기의 빈도별 유속, 수위, 통수단면적 결과인 80년 빈도(86.1mm)-유속(3.594m/s)-수위(3.194m)-통수단면적(53.197m2)에 해당하는 계산된 유량은 191.212m3/s로 분석되었다. 그리고 최대통수가 가능한 수위 4.110m의 계산된 유량은 313.674m3/s(약 424년 빈도 추정, 유속 4.203m/s, 통수단면적 74.761m2)로 결국에는 빈도(년)에 해당하는 수위-유량관계식(고수위 외삽추정식)을 통해 고유량을 산정할 수 있었다.

  • PDF

Flow Analysis in Road Gutter Storage Using Fluent Model (Fluent 모형을 이용한 도로 측구 저류조에서의 흐름 분석)

  • Kim, Jung Soo;Lee, Min Sung;Han, Chyung Such;Yoo, In Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.234-234
    • /
    • 2022
  • 도로에서의 우수를 원활하게 처리하기 위해서 빗물받이 및 연결관 등의 노면 배수시설이 설치되고 있으며, 노면 배수는 측구부를 통해 흘러 빗물받이 유입부로 차집되고 연결관을 통해 하수관거로 배수된다. 그러나 최근 국내 기상패턴의 변화로 국지성 집중호우와 같이 시간당 강우량 증가로 도로부와 저지대에서 배수시설의 배수불량에 따른 도심지 내수침수 피해가 발생하고 있다. 이에 정부에서는 다양한 우수관거 개선사업, 빗물펌프장, 지하저류조와 같은 방재시설을 설치하고 있으나 우수유출저감시설은 대규모 예산이 소요되고 실제 침수지역에 피해 저감효과에 대한 효용성 문제에 대한 제기뿐만 아니라 과밀화된 도심지에서는 지하공간 활용에 한계가 있는 실정이므로 도심지의 다양한 공간을 활용한 도시 배수 및 저류시설에 대한 연구가 필요하다. 따라서 본 연구에서는 유휴 공간인 도로 측구부 공간을 활용하여 도로 노면수를 저류 및 지체할 수 있는 노면수 측구 저류시설의 개념을 제시하고 측구저류조의 활용성을 판단하기 위하여 빗물받이 유입구, 빗물받이, 측구 저류조 및 빗물받이와 측구저류조 연결부에서의 노면수 유입, 유출 및 저류 등의 다양한 흐름 변화를 확인하기 위하여 Fluent 모형의 적용성을 분석하였다. 수치모의 전체 형상은 50x50cm 크기의 빗물받이를 기준으로 양쪽에 2m 길이의 측구 저류조를 원형관으로 연결하여 1/5 축소모형으로 구성하고 격자는 빗물받이 유입부, 빗물받이 및 측구 저류조 내부의 복잡한 3차원 흐름을 모의하기 위해 사면체와 육면체로 조밀하게 생성하였다. 다상유동해석을 위해 VOF(Volume of Fluid)방법을 적용하였고, 수치해석 방법으로는 비정상류, 난류 모형으로는 SST k-ω모형을 적용하였다. 수치모의 조건으로는 설계빈도별(5~30년) 우수유출량을 산정하여 유입 유량별 기존 빗물받이 유입부에서의 유입흐름, 빗물받이 내부에서의 와 발생흐름, 측구 저류조 및 연결관에서의 흐름을 구현하여 분석하였다. 수치모의 결과 빗물받이 유입부에서 연결관을 통한 측구 저류조로 유입되는 유입흐름과 빗물받이 하단부의 배수관을 통해 유출되는 흐름을 정상적으로 구현하였으며, 빗물받이 유입부 및 측구 저류조 연결관에서의 유속변화도 확인할 수 있었다. 또한 빗물받이와 측구 저류조에서 다양한 흐름을 구현하기 위한 Flunet 모형의 적용성을 검토하였으며, 향후 수리실험을 통하여 실제 흐름과의 매개변수 최적화 및 다양한 도로 조건의 변화를 고려한 수치모의 분석을 통하여 지속적인 모형의 검증이 가능할 것으로 판단된다.

  • PDF

Radar-based rainfall prediction using generative adversarial network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측)

  • Yoon, Seongsim;Shin, Hongjoon;Heo, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.471-484
    • /
    • 2023
  • Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.