• Title/Summary/Keyword: 호수 및 습지 퇴적물

Search Result 12, Processing Time 0.029 seconds

Sediment Material Contents and Settling Velocity of Particle Material in the Constructed Wetland in Sookcheon in the Cachment of Daecheong Reservoir (대청호 유역 소옥천 인공습지에서 부유물질 침강속도 및 퇴적물의 물질함량)

  • Je-Chul Park;Dong-Sup Kim;Kwang-Soon Choi
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.244-250
    • /
    • 2022
  • The changes in COD, TOC, T-P, and T-N concentrations were investigated for 2 years in the constructed wetland of Sookcheon, which was installed to improve the water quality of Daecheong reservoir in South Korea. In order to evaluate the pollution level of sediments in the wetland, settling velocity of particulate material (4 times) and sedimet material contents (6 times) were measured. COD and TOC concentrations increased slightly as they passed through wetlands, and T-N and T-P concentration tended to decrease. The material content (COD, T-P, T-N) of aquatic plants was higher in floating-leaved and free-floating macrophytes than emergent macrophytes. As a result of measuring the sedimentation rate of suspended materials, most of the suspended materials introduced into constructed wetlands were sedimented at a rapid rate in the first sedimentation site. In addition, sediment pollution of T-P and T-N in constructed wetland was in severe pollution. The sediments containing a large amount of T-P and T-N were eluted by physical and chemical environmental changes, which is likely to act as internal pollution sources in wetlands.

The Applicability of Stable Isotope Analyses on Sediments to Reconstruct Korean Paleoclimate (우리나라의 고기후 복원을 위한 습지 퇴적물의 안정동위원소 분석 가능성 연구)

  • Park, Jung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.4
    • /
    • pp.477-494
    • /
    • 2008
  • Stable isotope analyses on lake or wetland sediments are useful to reconstruct paleoclimate. Organic and inorganic carbonates obtained from lake sediment are isotopically analyzed to get oxygen and carbon isotopic ratios. Oxygen isotope ratios can be used to quantitatively and qualitatively reconstruct paleo-temperature or humidity while carbon isotope ratios be used to reveal environmental changes around the lake or human impacts on the area. Peat mosses in peat bogs are nice samples for the carbon isotope analysis, which derives paleo-temperature and paleo-atmospheric $CO_2$ changes. In coastal area, the reconstruction of past sea-level is possible because terrestrial originated organic matter is carbon isotopically different from marine originated organic matter. Also, scientists can do research on Asian Monsoon based on the fact that $\delta^{13}C$ of C3 plants and C4 plants are consistently different each other and that they are distributed differently with respect to salinity. In Korea, paleoenvironmental studies using stable isotopes are not popular yet because of low academic interests on the methodology and difficulties of obtaining proper sediment samples. Interesting results can be produced to answer paleoenvironmental questions of Korea if scientists isotopically analyze sediment cores from a paleo-lake such as Hanon in Jeju island, peat bogs such as Mujechi-Neup and Yong-Neup, and coastal wetlands.

Distribution Characteristics of Alien Plants by Wetland Types in the Ecologically Outstanding Wetlands of South Korea (국내 생태우수습지의 유형별 외래식물상 현황 및 특성)

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Mijeong;Lee, Changsu;Yoon, Jungdo;Lim, Jeoncheol
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.145-159
    • /
    • 2020
  • Wetlands are vulnerable to biological invasion by alien species, because they function as sinks that accumulate excess water, sediments, nutrients, and other contaminants from the surrounding watersheds by disturbance. In this study, to understand the status and characteristics of the alien plants based on the type of wetlands, we classified 24 ecologically outstanding wetlands and analyzed the status of alien flora. A total of 130 alien plants were found in the wetlands, accounting for 11% of the total plant species. Among them, the Asteraceae species was the most diverse, with 40 species. Erigeron annuus and Oenothera ordorata had the highest frequency of occurrence. The species richness of alien plants in the riverine and lacustrine wetlands (average: 30 species) was higher than that in the mountainous palustrine wetlands (average: 10 species). The same results were found in the naturalization index, urbanization index, and ratio of annuals and biennials, which indicate the degree of artificial interference. In the cluster analysis, the riverine and lacustrine wetlands were combined, and only the mountainous palustrine wetlands were separated. The number of alien plants is remarkably low in the mountainous palustrine wetlands, and it is considered to be the influence of Erigeron strigosus, Symphytum officinale, and Bilderdykia convolvulus, not found in the other types of wetlands. In particular, invasive alien plants such as Aster pilosus, Ambrosia trifida, Sicyos angulatus, Ambrosia artemisiifolia var. elatior were found intensively in the riverine wetlands. Therefore, it is considered that a methodical management is urgently required considering the dispersal of alien plants in the riverine and lacustrine wetlands with high artificial interference.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Modeling the Fate and Transport of Arsenic in Wetland Sediments (습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형)

  • Park, Seok-Soon;Wang, Soo-Kyun
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.434-446
    • /
    • 2003
  • The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

Periphytic Diatom Communities and Water Environment in the Donghwa Constructed Wetlands (동화습지의 갈대 침수줄기에 서식하는 부착규조군집의 생태학적 특성)

  • Kim, Baik-Ho;Park, Young-Seok;Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.91-102
    • /
    • 2010
  • Water quality and epiphytic diatom on the submerged stems of reed (Phragmites communis), which occupy 90% of the Donghwa wetland macrophytes were monthly monitored at three points such as inflow stream, high- and low-level wetlands, and outflow stream between March and October, 2005. 1) A diverse and high density of diatom species observed in the cold-season, especially Nitzschia palea and Nitzschia amphibia dominated the diatom community without wetlands. 2) High DAIpo and TDI indices were measured over the sampling periods and stations, regardless of nitrogen increase and phosphorus increase through the wetlands. 3) Higher density of diatom species in high wetland than low wetlands was attributed in the enough nutrients and light penetration by low growth of reed. Therefore, epiphytic diatom of reed stem in Donghwa wetland, where high nutrients released from the sediment and reed debris after the death of macrophytes, flourished with low canopy of low reed vegetation.

Water Quality Improvement by Natural Wetland (습지에 의한 수질개선 효과)

  • Kim, Bom-Chul;Kim, Ho-Sub;Jun, Man-Sig;Hwang, Gil-Son
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.295-303
    • /
    • 2000
  • The water clarification efficiency was examined in a shallow wetland where dense vegetation was formed naturally in an abandoned paddy field. And, also two enclosure experiments were carried out to measure the effects of materials exchange between sediment and the overlying water with the existence of vegetation and accumulated litter. The hydraulic retention time of wetland was regulated in 1.2 day. The removal rates of SS (56%) and $NO_3-N$ (61%) were high, considering its short retention time. However, removal efficiencies of VSS (28%), COD (14%), DOC (1%),and TP (0.2%) were relatively lower. This low removal efficiencies were thought to be due to the release of dissolved form of organic matter and phosphorus from the sediment. Most of constituents except nitrate were higher in the enclosure at the beginning of enclosure installation than that of the outflowing water from wetland. And then, it has fluctuated and decreased with time. The wetland was in equilibrium state of settling, accumulation of organic debris, and regeneration of dissolved material from sediment. So ultimately high primary production by dense vegetation in the wetland may be the reason of unfavorable or low treatment efficiency of wetland after many years of operation for wastewater treatment. However, the water quality of effluent from the wetland showed smaller variation and better condition than that of inflow, especially during storm events. It can be concluded that this wetland is suitable for the improvement of water quality from nonpoint sources.

  • PDF

Simulation of Riverbed Change for Runoff at Gumi Weir Downstream (구미보 하류에서의 유역유출량 변화에 따른 하상변동 연계모의)

  • Lee, Jong Mun;Jung, Woo Suk;Ahn, Jungkyu;Kim, Young Do;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.48-48
    • /
    • 2018
  • 하천생태계가 호수나 습지생태계와 비교하여 갖는 가장 큰 특징은 '흐름'이 강하게 존재한다는 점이다. 댐과 보 등의 인공물은 하천 내 흐름을 변화시키고, 유량을 조절함으로써 하류에서의 퇴적물 축적, 입자크기, 강의 경사 등의 환경적인 요인이 변화하게 된다. 낙동강 하류는 상류부에 설치되어 있는 안동, 임하, 합천, 밀양 및 남강댐 등 다목적댐과 그 사이에 설치된 보에 의해 지속적으로 하천 유량이 조절되고 있다. 댐/보와 하구둑이 연계된 정체성 조절하천 시스템인 낙동강의 경우, 기후변화와 그에 따른 강우패턴의 변화에 직접적인 영향을 미친다. 특히, 다기능보는 하천을 횡단하는 수공구조물로써 보의 수문운영 방식에 따라 유량이 변화하여 하상변동 및 유사이동 형태의 변화 가능성이 있다. 그러나 기후변화에 따른 유출량 변화와 하상변동을 연계하여 분석한 연구는 매우 드물기 때문에 본 연구가 충분히 가치가 있다고 판단된다. 본 연구에서는 낙동강 유역의 구미보 하류와 칠곡보 구간에서 미래기후시나리오를 예측하여 SWAT 모형에 적용하여 수문모의를 통한 유출량 분석을 수행하였다. 미래 유출량 분석결과를 하상변동 모델인 GSTARS의 입력자료로 적용하여 유출량 변화에 따른 하상변동 양상을 분석하고자 하였다. GSTARS 모델의 수류튜브와 유사량 공식을 적용하여 연구구간에서의 최심하상고 분석과 주요지점에서의 횡단면 사행분석을 수행하여 유출량 변화에 따른 하상의 변화와 그에 따른 수리계수들의 변화를 분석하였다.

  • PDF

Analysis of the Phosphate Movement Using the Mesocosm in the Wetland (Mesocosm을 이용한 습지에서의 인 거동 분석)

  • Son, Jang-Won;Yoon, Chun-G.;Kim, Hyung-Chul;Haam, Jong-Hwa
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study used a mesocosm which presumes movement of the nutrient (especially $PO_{4^-}P$) in the wetland. After setting up the mesocosm inside the wetland and adding the $PO_{4^-}P$, observed the movement of the $PO_{4^-}P$ every hour. We analyzed the variables which had the possibility of affecting $PO_{4^-}P$ concentration in the wetland-flora, absorbing rate of algae, settling rate, release rate. Immediately after adding $PO_{4^-}P$, the concentration of the TP in water column at each mesocosm was 0.48, 12.4, 20.4, $23.6\;mg\;L^{-1}$, after 21 days they were 0.6, 1.92, 6.97 and $6.94\;mg\;L^{-1}$ respectively. The concentration of the TP in water column at the mesocosm decreased on average 73.7%. The concentration of the $PO_{4^-}P$ inside reed, algae and sediment in the mesocosm was increased from $0.73mg\;gDW^{-1}$, $3.81mg\;gDW^{-1}$, $466.1mg\;kg^{-1}$ to $0.83mg\;gDW^{-1}$, $4.57mg\;gDW^{-1}$ and $813.3mg\;kg^{-1}$ respectively. Algae is more sensitive than reeds in absorption of the nutrient. TP removal by settling was highest. Budgeting of TP indicated that P moved from particulates in the water column to sediment and algae. Immediately after adding $PO_{4^-}P$, water column (24.2%) and sediment (49.0%) dominated TP storage, with algae (10.3%) and reed (16.4%) holding smaller proportions of TP. After 21 days, Sediment (59.0%) and algae (17.9%) dominated TP storage, with water column (7.1%) and reed (15.8%) holding smaller proportions of TP. Estimation of phosphate movement using mesocosms is an appropriate method because wetlands have many controlling factors. Analysed data can be compared to background data for wetland construction and management.

Limnological Characteristics and Influences of Free-floating Plants on the Woopo Wetland during the Summer (하계우포습지의 육수학적 특성 및 부유수생식물의 영향)

  • Joo, Gea-Jae;Kim, Gu-Yeon;Park, Sung-Bae;Lee, Chan-Woo;Choi, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.273-284
    • /
    • 2002
  • During January 1998-October 1999, the impact of free-floating plants (FFP) on limnology of the wetland ecosystem was evaluated through the investigation of physicochemical characteristics of the Woopo Wetland along with in situ manipulation experiments of aquatic plants. Flooding events occurred in the wetland during the summer period (Jun.-Aug.) and water levels rose to 2-3 m due to precipitation from the catchment and inflow from the main channel of the Nakdong River. Physicochemical parameters and plankton dynamics in the wetland during the summer were greatly influenced by floods and growth of free-floating plants. Dissolved oxygen (Jun.-Sept., 4.5${\pm}$2.5 mg/1; Oct.-May, 8,1 ${\pm}$4.0 mg/1) and pH (Jun.-Sept., 6.9${\pm}$0.4; Oct.-May,7.4${\pm}$0.8) levels were significantly lower during the summer than any other seasons. Three types of enclosure experiments (100 L, treatments with floating plants, screened and opened) were conducted under the presence and absence of sediment for 15 days in the 1999 summer. The treatments with sediment had higher levels of nutrient concentrations than those of the others. Among the treatments with sediment, nutrient concentrations in the treatments with free-floating plants were higher than the others. Zooplankton communities in each treatment showed a similar variation, although the scale of zooplankton densities differed. Rotifer community dominated the zooplankton at the initial phase of the experiment, but decreased drastically along with an increase of cladoceran and copepod communities. In conclusion, low levels of dissolved oxygen and pH in the Woopo Wetland during the summer seemed to be caused by a proliferation of free-floating plants and active decomposition process at the bottom of the sediment.