• Title/Summary/Keyword: 호수

Search Result 2,074, Processing Time 0.034 seconds

Analysis of Eutrophication Based on Chlorophyll-a, Depth and Limnological Characteristics in Korean Reservoirs (육수학적 특성에 따른 국내 저수지의 부영양화 유형분석 -엽록소 a와 수심을 중심으로)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.213-226
    • /
    • 2004
  • The present study was conducted to analyze the pattern of eutrophication of Korean reservoir with Chl. a concentration and morpho-physical parameters, and to valuate water quality characteristics of the classified types. The collected data from 486 reservoirs were classified as four types, with the Chl- a concentration (25 ${\mu}g\;L^{-1}$) and the ratio of water storage/surface area (mean depth, 7.5 m). According to OECD criteria and trophic state index based on Chl-a concentration, 34.3 and 72.8% of selected reservoirs appeared to be eutrophic, respectively. Characteristics of TYPE ll reservoirs generally showed high Chl-a concentration, relatively old age, small DA/LA ratio, short Hydraulic retention time, large paddy field and field to watershed ratio, and high pollutant loading compared to other types of reservoirs. The difference of TP concentration was greater than that of TN concentration in reservoir water among classified four types. Based on TN/TP ratio (by weight), phosphorus was limiting nutrient in all types and more closely related with Chl- a concentration than nitrogen. Significant decrease of Chl- a concentration with increase of TN/TP ratio observed only in reservoirs with Chl-a concentration > 25${\mu}g\;L^{-1}$. Although drainage area is believed to be a factor that is related to the generation load of pollutants in the watershed, it did not show any significant relationship with water quality parameters. Morphometric characteristics such as depth and age of reservoir as well as type of land use patterns in the watershed was among important parameters for the assessment of water quality characteristics in Korean reservoirs.

Microalgal Growth and Nutrient Removal in a Lake, a Stream and the Outflow of a Wastewater Treatment System (호수수, 하천수와 하수처리수에서 미세조류 증식 특성 및 영양 염류 제거 효과)

  • Chang, In-Ho;Joung, Yo-Chan;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • The possibility of nutrient removal during Scenedesmus sp. growth in Lake Paldang, Geongan cheon stream, and the outflow from a wastewater treatment system was examined. Scenedesmus sp. grew well in Lake Paldang water when total nitrogen (TN) and total phosphorus (TP) values were 1.9 and 0.02 mg $L^{-1}$, respectively, and 50% of the nutrients were removed. In Geongan cheon stream, the TN and TP was 3.0 mg $L^{-1}$ and 0.09 mg $L^{-1}$, respectively, chlorophyll-${\alpha}$ reached a maximum of 239~259 $m^{-3}$, and 50% of the nutrients were removed. In the wastewater treatment outflow, where Scenedesmus sp. already existed, the organism grew well without inoculation. Scenedesmus sp. can grow with proper inoculation and physical turbulence in natural waters, such as lake and stream water, and nutrients can be eliminated as phytoplankton growth occurs.

Hypoxia and Characteristics of Nutrient Distribution at the Bottom Water of Cheonsu Bay Due to the Discharge of Eutrophicated Artificial Lake Water (간척지 내 부영양화된 호수 수괴의 간헐적 유출로 인한 천수만 저층수의 Hypoxia 발생과 영양염 분포 특성)

  • Lee, Dong-Kwan;Kim, Ki-Hyun;Lee, Jae-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.854-862
    • /
    • 2016
  • In summer 2010, we measured the concentration of dissolved oxygen (DO) and nutrients in the water collected at the bottom of Cheonsu Bay, off the west coast of Korea. We also measured nutrient fluxes across the sediment-water interface by deploying a fully-automated benthic lander, which collected time-series water samples inside a benthic chamber. We confirmed on-going hypoxia in the northern parts of the bay where polluted lake water was discharged. DO content in the water at the bottom was 2 mg/l, compared to 5 mg/l at the mouth of the bay in the south. Nutrient concentrations showed a trend that was opposite to that of DO. The variation of N/P ratios implies phosphate desorption and a release of nutrients caused by hypoxia. The organic carbon oxidation rate and oxygen consumption rate in the northern parts of the bay were about twice as fast as those at the mouth of the bay. Benthic fluxes of nutrients in the northern part of the bay were 4 to 6 times higher than those at the mouth. Our results imply that it is important to understand the role of hypoxia events to make an accurate estimation of material fluxes across the sediment-water interface.

A Comparative Analysis of Maximum Entropy and Analytical Models for Assessing Kapenta (Limnothrissa miodon) Stock in Lake Kariba (카리브호수 카펜타 자원량 추정을 위한 최대엔트피모델과 분석적 모델의 비교분석)

  • Tendaupenyu, Itai Hilary;Pyo, Hee-Dong
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.613-639
    • /
    • 2017
  • A Maximum Entropy (ME) Model and an Analytical Model are analyzed in assessing Kapenta stock in Lake Kariba. The ME model estimates a Maximum Sustainable Yield (MSY) of 25,372 tons and a corresponding effort of 109,731 fishing nights suggesting overcapacity in the lake at current effort level. The model estimates a declining stock from 1988 to 2009. The Analytical Model estimates an Acceptable Biological Catch (ABC) annually and a corresponding fishing mortality (F) of 1.210/year which is higher than the prevailing fishing mortality of 0.927/year. The ME and Analytical Models estimate a similar biomass in the reference year 1982 confirming that both models are applicable to the stock. The ME model estimates annual biomass which has been gradually declining until less than one third of maximum biomass (156,047 tons) in 1988. It implies that the stock has been overexploited due to yieldings over the level of ABC compared to variations in annual catch, even if the recent prevailing catch levels were not up to the level of MSY. In comparison, the Analytical Model provides a more conservative value of ABC compared to the MSY value estimated by the ME model. Conservative management policies should be taken to reduce the aggregate amount of annual catch employing the total allowable catch system and effort reduction program.

Global Environmental Changes and the Antarctic (지구환경변화와 남극)

  • Lee, Bang-Yong;Chung, Ho-Sung;Kang, Sung-Ho;Chang, Soon-Keun
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.216-233
    • /
    • 2003
  • This study delineates the phenomena related with global environmental changes such as global warming, ozone depletion, and El Ni${\tilde{n}}$o/Southern Oscillation (ENSO) noted in the Antarctic. Retreat of ice cliffs, glaciers, and calving of ice shelves indicate the effects of recently aggravated global warming. The ice cliff located at Marian Cove, King George Island, South Shetland Islands off the Antarctic Peninsula has been observed to be retreating faster in the last 7 years than in the previous 38 years since 1956. There are some indications of temperature and precipitation changes associated with ENSO around King Sejong Station. The regression analyses indicate significant trends such as a decrease in the total amount of ozone and an increase in ultraviolet radiation which was seen by a satellite (TOMS-EUV) in September and October which correspond to ozone-hole season over King Sejong Station. Increase of UV radiation due to the ozone depletion in the Antarctic has changed the growth rate of marine organisms. It may also result in changes to the productivity, biomass, and species composition of marine organisms which can affect the whole marine ecosystem. The recent ice-core drilling over Lake Vostok has been reviewed with emphasis on the four cycles of glacial stages over the past 420,000 years. It is time to show more interest in mainland Antarctica through investigations of the coring and vast ice sheet, terrestrial geology, and upper atmospheric sciences in order to understand the past environmental changes and to predict possible changes to the environment in the future.

Holocene Climate Optimum and environmental changes in the Paju and the Cheollipo areas of Korea (한반도 홀로세 온난기후 최적기 (Holocene Climate Optimum)와 지표환경 변화)

  • Nahm, Wook-Hyun;Lim, Jae-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.15-30
    • /
    • 2011
  • Three sediment cores from two different locations (UJ-03 and UJ-12 cores of valley sediment in Paju area, and CL-4 core of wetland sediment in Cheollipo area) along the western Korean Peninsula yield crucial information on the timing and spatial pattern of century-scale climate changes and subsequent surficial responses during the Holocene. In Paju area, the sediments included abundant coarse-grained sediment (coarse sands and pebbles) from 7100 to 5000 cal. yrBP, total organic carbon (TOC) values showed a marked increase from 5000 to 2200 cal. yrBP, several intermittent depositional layers were observed from 2200 cal. yrBP. In Cheollipo area, lake environment developed from 7360 to 5000 cal. yrBP, the deposition of organic materials increased from 5000 to 2600 cal. yrBP, peatland formed from 2600 cal. yrBP. The two patterns of surficial responses to the climate changes through the Holocene are different to each other. This might be due to the dissimilarity in geomorphic conditions. However, the approximate simultaneity of environmental changes in two areas shows that they both can be correlated to the major climate changes. Two areas which have undergone significant changes indicated that the hydrological factors including precipitation and strength of water flow were most responsible for the landscape and geomorphic evolutions. Although the upwards trend in relative sea-level also played a primary role for environmental changes in coastal area (Cheollipo area), detailed studies have still to be undertaken.

  • PDF

Analysis of Discharge and Water Quality change of Doam Reservoir by Climate Change (기후변화에 따른 도암댐유역의 유출 및 수질변화 분석)

  • Kim, Jung-Min;Kim, Young-Do;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.908-908
    • /
    • 2012
  • 국내 기후 특성상 하절기에 집중되는 강우로 인해 댐의 건설을 홍수조절, 용수확보 및 전력생산 등의 목적에 있어서 불가피하다. 이와 같은 저수지와 하류하천은 댐 수문 개폐에 따라 흐름변화로 인하여 수체의 거동 및 수질 변화가 발생하며, 일반적인 하천과는 다른 특성을 지니게 된다. 또한 수심이 깊은 저수지의 경우에는 흐름방향과 더불어 수심 방향의 특성도 중요하며, 수리 및 수질 모형의 연계를 통한 3차원적인 해석을 필요로 한다. 유역 내 지상 또는 대기에서 발생한 모든 오염물질은 강우에 의해 하천과 호수와 같은 수체로 유입되며, 강우가 발생했을 때 유역의 토지피복 상태와 수리, 지형, 강우강도, 토양의 특성에 의해 하천으로 유입되는 오염물질의 농도와 부하특성이 달라진다. 비점오염물질의 축적이 가능한 호수나 저수지에서는 비점오염원의 유입이 더 큰 문제가 되며, 유량이 극히 미미한 하천의 경우에는 강우초기에 일시에 집중적으로 유입되는 초기 오염 부하량이 문제가 된다. 강우유출수의 하천 유입은 강우 현상과 밀접한 관계를 맺고 있으므로 그 제어가 쉽지 않다. 이러므로 이를 총괄하는 유역통합관리기술이 필요로 하며, 기존의 유역통합관리기술은 댐 상류유역을 중심으로 개발되고 있으며, 댐 상류유역과 저수지, 하류하천으로 구분되어 연구되어 왔다. 또한 각각의 모형이 개별적으로 적용되어 통합적인 평가시스템이 표준화되지 않은 관계로 댐 상하류 모니터링 자료가 연계된 실무 적용이 이루어지지 않고 있다. 따라서 하천 수리 수문학적 역학구조를 이해하고 그 특성에 적합하게 평가할 수 있는 표준화된 시스템이 구축되어야 한다. 또한 효과적인 유역통합관리를 위해서는 하천의 현재 뿐만 아니라 장래에 대한 예측부분도 포함되어야 한다. 본 연구에서는 댐 유역에서의 유출과 수질 변화를 모의하고 이를 이용하여 저수지 내에서의 오염물질 거동에 대해서 해석하였다. 또한 기후변화에 따른 유역, 저수지 및 하천에 미치는 영향을 고려하기 위하여 고해상도 지역기후전망 모의자료를 이용하여 수문학적 스케일로 통계적 상세화한 후 지역별 상세수문시나리오를 생산하여 미래 예측에 활용하였다. 기후변화 시나리오의 상세화를 통한 상세지역의 기후를 예측하고, 예측된 기상자료를 이용하여 유역모델을 모의하여 미래의 유출 및 수질 변화를 파악할 수 있는 기술 개발로 인해 저수지의 운영에 도움을 주고, 주수지의 치수증대 사업 등 유출의 변화에 따른 하류하천 변화를 파악할 수 있고, 기후변화에 따른 하류하천에 대한 홍수기 때 치수, 이수 및 방재에 대하여 기초자료를 제공할 수 있을 것으로 판단된다.

  • PDF

Water Quality Analysis and Evaluation of Management Strategies and Policies in Laguna Lake, Philippines (필리핀 라구나호수의 수질분석 및 관리 정책 평가)

  • Reyes, Nash Jett D.G.;Geronimo, Franz Kevin F.;Redillas, Marla M.;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2018
  • Laguna Lake is the largest inland fresh water body in the Philippines. It primarily serves as a site for aquaculture, hydropower, transportation, and water supply industries. Due to Laguna Lake's diverse functionalities, competition among water users became prominent. Water quality began to deteriorate due to various pollutant contributions in this process, thereby affecting the soundness of the aquatic ecosystem. This study was conducted to evaluate the current water quality management policy from the viewpoint of ecological environment through the evaluation of the water quality of Laguna Lake. Concentrations of water pollutants such as ammonia ($NH_3$), biochemical oxygen demand (BOD), chloride ($Cl^-$), pH, and total suspended solids (TSS) exceeded the water quality standards of the Philippines' Department of Environment and Natural Resources (DENR). The water quality of the lake was also affected by the pollutant load due to agriculture and urban stormwater runoff in the watershed. The salinity and contaminated water from Pasig River also affected the water quality of Laguna Lake. Long-term water quality analysis showed that the water quality of Laguna Lake is also influenced by rainfall-related seasonal variations. The results of the water quality analysis of Laguna Lake indicated that the environmental management techniques of the Philippines should be changed from the conventional water management into an integrated watershed management scheme in the future. It is therefore necessary to study and introduce advanced watershed management measures in the Philippines based from the policies of other developed countries.

Identification of Alga-lytic Bacterium AK-07 and Its Enzyme Activities Associated with Degradability of Cyanobacterium Anabaena cylindrica (Anabaena cylindrica 분해세균 AK-07의 동정과 분해 관련 효소활성 조사)

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.108-116
    • /
    • 2003
  • To investigate bacteria with algal Iytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles of alga-Iytic bacteria, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Abacterial strain AK-07 was characterized and identified as Acinetobacter johnsonii based on its16S rDNA base sequence. When AK-07 was co-cultivated with A. cylindrica, bacterial cells propagated to $8\;{\times}\;10^8$ cfu $ml^{-1}$ and Iyses algal cells. However, culture filtrates of AK-07 did not exhibit algal Iytic activities. That suggesting the enzymes on the surfaces of the bacterium might be effective algal Iytic agents to cause Iyses of cells. Acinetobacter johnsonii AK-07 exhibited high degradation activities against A. cylindrica, and formed alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, glycosidases for example ${\beta}$-galatosidase, ${\beta}$-glucosidase, ${\beta}$-glucosaminidase, and ${\beta}$-xylosidase, which hydrolyzed ${\beta}$-0-glycosidic bonds, were found in cell-free extracts of A. johnsonii AK-07. Other glycosidase such as ${\alpha}$-galctosidases, ${\alpha}$-N-Ac-galctosidases, ${\alpha}$-mannosidases, and ${\alpha}$- L-fuco-sidases, which cleavage ${\alpha}$-0-glycosidic bondsare not detected. In the results, enzyme systemsof A. johnsonii AK-07 were very complex to do-grade cell walls of cyanobacteria. The polysaccharides or peptidoglycans of A. cylindrica maybe hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by strain AK-07 of A. johnsonii.

Evaluation of Water Quality Variation and Sediment of a Shallow Artificial Lake (Lake llgam) in Located the Metropolitan Area (도심의 얕은 인공호인 일감호의 수질변화특성과 퇴적환경의 평가)

  • Kim, Ho-Sub;Ko, Jae-Man;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.161-171
    • /
    • 2003
  • The present study evaluated water quality variation, limiting nutrient, and sediment of a shallow eutrophic lake (Lake Ilgam) in the metropolitan area from 2000 to 2002. According to annual mean chl.a ($77.2{\pm}36.6\;{\mu}g/l) and TP ($66.6{\pm}20.5\;{\mu}g/l) concentration and trophic state index (>60), Lake llgam was in very eutrophic status. Both inorganic nitrogen ($NH_3-N$ and $NH_3-N$) and phosphorus (SRP) concentrations in the water column increased during winter and spring, but decreased during summer followed by the phytoplankton development. Evidence for phosphorus and nitrogen as being the potential limiting nutrients for phytoplankton growth was supported by the ratio of DIN/DIP (by mass) (${\sim}$835.8), TSI derivations analysis, and algal growth potential bioassay. Based on the results of TSI derivations, strong nutrient limitation by both N and P occurred from September to November when P content in sediment (114.6 mg P/kg) was relatively low compared with the summer. Sediment contained a large amount of nitrogen (TKN: 4,452${\pm}$283.0mg N/kg dry sediment). Phosphorus content in sediment (TP: 313${\pm}$155 mg P/kg) was relatively low with temporal change. P release rate (0.29${\pm}$0.02 mg $m^{-2}$ $day^{-1}$) was high under the aerobic condition at pH 9. These results indicate that the sediment could play an important role as a source of a limiting nutrient, and temporal change of P content in the sediment is closely related with water quality, especially algal biomass change in Lake llgam.