• Title/Summary/Keyword: 호수

Search Result 2,069, Processing Time 0.032 seconds

Water Quality and Chlorophyll-a at the Birth Stage of a Large Reclaimed Estuarine Lake in Korea (Lake Hwaong) (간척하구호 (화옹호) 태동기의 수질과 엽록소-a 변화)

  • Kim, Ho-Sub;Chung, Mi-Hee;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.455-462
    • /
    • 2003
  • This study evaluated the change of water quality and chlorophyll - a at the birth stage of a large reclaimed estuarine lake (Lake Hwaong) of which the dike was finally constructed in March, 2002. Physico -chemical parameters and chlorophyll - a were investigated along a longitudinal transect, including 3 in-lake sites and 1 out-lake site from June to November, 2002. Salinity at all in-lake sites was over 21 psu during the study period, indicating that lake is still in the seawater phase. Salinity was periodically diluted at times when precipitation was high, especially in August. Chemocline was established in July near the dam site, and correspondingly vertical profile of dissolved oxygen was very clear during that Period. Total nitrogen and phosphorus concentrations at all lake sites were in the eutrophic range, and they were especially high at the stream inlet site. Nutrients concentration was not much varied vertically but significantly varied temporally, and correlated significantly with precipitation and chlorophyll-a concentration, indicating that inflowing water from the watershed seemed not to improve lake water by dilution but cause eutrophication of the lake, and thereby stimulate phytoplankton development. Based on the analyses of nutrient ratio (N/P) and trophic state deviation, both phosphorus and nitrogen appeared to limit phytoplankton growth in the lake. Phosphorus limitation appeared to be probable at all in-lake sites with being most severe at the stream inlet site. Nitrogen limitation seemed to occur at both in-lake and out-lake sites. These results indicate that in Lake Hwaong experiencing the very early stage of a reclaiming lake, water quality and phytoplankton development appear to be affect-ed largely by salinity and hydrology and nutrients from the inflowing water. Lake biogeochemistry is still very unstable, and thus further long-term study is necessary to understand the effects of seawater to freshwater conversion on lake biology and water chemistry.

Monsoon Inflow as a Major Source of In-lake Phosphorus (호수내 인의 주요원으로 몬순 유입수)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.222-229
    • /
    • 2000
  • Spatial and temporal variation of phosphorus in response to intensity of summer monsoon was evaluated in Taechung Reservoir during 1993${\sim}$1994. Total phosphorus (TP) averaged 31 ${\mu}$g/l during the study and varied from 6 to 197 ${\mu}$g/l. Concentrations of TP were highest in the headwaters during the monsoon of July${\sim}$August 1993, and these values were mainly made of particulate P and were closely associated (R$^{2}$=0.74, p<0.001) with high inorganic suspended solids (NVSS). In-lake TP in the headwaters was mainly influenced by the watershed runoff and declined toward the dam. Values of TP downlake was only one-fifth of the peak in the headwaters and had no correlation with NVSS. In 1994, inlake TP was markedly lower relative to 1993 and showed low spatial and temporal variation. Maximum TP during monsoon 1994 in the headwaters and mid-lake was 72% and 52% lower, respectively, than in those two zones in 1993 whereas TP downlake was similar between the two years. These results suggest that temporal variation downlake is much less influenced by seasonal inflow compared to the haedwaters. In 1993, mean TP before fall overturn, based on average value for all sites, was significantly (t=5.99, p<0.001) greater than the mean after fall overturn, whereas in 1994 mean TP after fall overturn (32 ${\mu}$g/l) was greater. This outcome indicates that in 1993 major P-input originated from the external source from the watershed during the intense monsoon, whereas in 1994 internal processes dominated during the weak monsoon. Overall data suggest that annual budget of inlake P is regulated by intensity of the summer monsoon, and phosphorus data measured at single site near the dam or headwater zone may not be represent seasonal trends of the system due to large spatial variation of Taechung Reservoir.

  • PDF

Analyzing the Economic Value and Planning Factors of Hubs within Urban Green Infrastructure - Focusing on the Case of Sejong Lake Park - (도시 그린인프라 핵심지역의 경제적 가치와 계획 요소 분석 - 세종호수공원 사례를 중심으로 -)

  • Lee, Dong-Kyu;An, Byung-Chul
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • This study targets the urban park corresponding to the core areas (Hubs) of Green Infrastructure and estimates their value utilizing the Contingent Valuation Method (CVM) and determines the planning factors which affect them. The research aims to provide basic data for supporting the value improvement in the planning stage for urban parks representing green infrastructure. The primary purpose of this research is to derive variables that affect economic value and planning factors to improve the use-value of urban parks, one of the Hubs of the green infrastructure. In this study, Sejong Lake Park, located in Sejong City, is the target site. This study collected the responses of 105 people by conducting a survey on the intention to pay for the use-value and the planning factors that affect it, targeting visitors to Sejong Lake Park. The study conducts Contingent Valuation Method (CVM) on this survey responses. The results are as follows: first, as a result of analyzing the variables which affect willingness to pay for use-value, residence and age influence the willingness to pay significantly among socioeconomic characteristics. Next, the survey responses of Double-bounded dichotomous choices (DB-DC) CVM are converted into variables through statistic techniques. Furthermore, the variables are used for a Logit model to draw coefficients. The average willingness to pay per person for the use-value of Sejong Lake Park using the derived coefficients was approximately found to be 8,597 won. Therefore, as of 2019, Sejong Lake Park, with a total of 430,000 visitors, is estimated to have an annual economic value of 3.7 billion won. Third, the average Likert scale of the planning factor affecting the decision to pay for the economic value of Sejong Lake Park was the highest along the waterfront landscape, and the convenience facilities and waterfront landscape showed the highest willingness to pay, 10,000 won. In the range between 2,500 won and 5,000 won, the waterfront area ranks highest. Therefore, it can be said that visitors to Sejong Lake Park take account of the economic value of using the waterfront landscape the most. This study is meaningful as a thesis on use-value and the planning factors that affected value evaluation results of urban parks, and the analysis of the correlation between the planning factors of urban parks as hubs located in urban areas.

Monitoring of Lake area Change and Drought using Landsat Images and the Artificial Neural Network Method in Lake Soyang, Chuncheon, Korea (Landsat 영상 및 인공 신경망 기법을 활용한 춘천 소양호 면적 및 가뭄 모니터링)

  • Eom, Jinah;Park, Sungjae;Ko, Bokyun;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • Drought is an environmental disaster typically defined as an unusual deficiency of water supply over an extended period. Satellite remote sensing provides an alternative approach to monitoring drought over large areas. In this study, we monitored drought patterns over about 30 years (1985-2015), using satellite imagery of Lake Soyang, Gangwondo, South Korea. Landsat images were classified using ISODATA, maximum likelihood analysis, and an artificial neural network to derive the lake area. In addition, the relationship between areas of Lake Soyang and the Standardized Precipitation Index (SPI) was analyzed. The results showed that the artificial neural network was a better method for determining the area of the lake. Based on the relationship between the SPI value and changes in area, the R2 value was 0.52. This means that the area of the lake varied depending on SPI value. This study was able to detect and monitor drought conditions in the Lake Soyang area. The results of this study are used in the development of a regional drought monitoring program.

Methane Gas Emission from an Artificial Reservoir under Asian Monsoon Climate Conditions, with a Focus on the Ebullition Pathway (아시아 몬순 기후지역에 위치한 대형 인공호에서 기포형태로의 메탄 (CH4) 가스 배출량)

  • Kim, Kiyong;Jung, Sungmin;Choi, Youngsoon;Peiffer, Stefan;Knorr, Klaus-Holger;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The role played by reservoirs in the biogeochemical cycles of elements is a subject of ongoing debate. Recent research has revealed that reservoirs emit significant levels of greenhouse gases. To assess the importance of reservoirs in monsoon climate areas as a source of methane gas into the atmosphere, we investigated variations in organic carbon (OC) input into the reservoir, oxic state changes, and finally the amount of methane emitted (focusing on the ebullition pathway) in Lake Soyang, which is the largest reservoir in South Korea. Total organic carbon (TOC) concentrations were higher during summer after two years of heavy rainfall. The sedimentation rates of particulate organic carbon (POC) and particulate organic nitrogen (PON) were higher in the epilimnion and hypolimnion than the metalimnioin, indicating that autochthonous and allochthonous carbon made separate contributions to the TOC. During stratification, oxygen depletion occurred in the hypolimnion due to the decomposition of organic matter. Under these conditions, $H_2S$ and $CH_4$ can be released from sediment. The methane emissions from the reservoir were much higher than from other natural lakes. However, the temporal and spatial variations of methane ebullition were huge, and were clearly dependent on many factors. Therefore, more research via a well-organized field campaign is needed to investigate methane emissions.

An Influence of Point-Source and Flow Events on Inorganic Nitrogen Fractions in a Large Artificial Reservoir (대형 인공호에서 무기 질소원에 대한 점오염원 및 유입수의 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.350-357
    • /
    • 2000
  • This paper evaluated the influence of point source and flow events on inorganic nitrogen fractions at 17 sites of Taechung Reservoir during 1993${\sim}$1994. Total nitrogen (TN) averaged 1.53 mg/L during the study and ranged between 0.70 and 2.56 mg/L. Dissolved inorganic nitrogen(DIN) accounted for >90% of TN regardless of season and location, indicating a nitrogen-rich system showing eutrophic${\sim}$hypereutrophic conditions. Some 67${\sim}$94% of DIN was NO$_{3}$-N, whereas mean level of NH$_{4}$-N was less than 5% of DIN. During monsoon 1993, dilution of NO$_{3}$-N was evident in the headwaters as a result of mixing of lake water with rain water, while NH$_{4}$-N increased>100% compared to the premonsoon. Values of NH$_{4}$-N had a positive correlation with rainfall (r=0.85; p<0.001) and negative correlations with theoretical water residence time(r=-0.90; p<0.001) and conductivity(r=-0.78, p<0.001), respectively. These outcomes suggest that NH$_{4}$-N came from external input from the watershed during the monsoon. In both years, mean TN was greater in the mid-lake sites than any other sites. A great amount of TN in the mid-lake was most pronounced in monsoon 1994 because of an accumulated influence of the point sources during low inflow. Overall data suggest that concentrations of TN in this system did not show large differences along the longitudinal gradients and its distributions is likely determined by point-sources rather than inflow regime.

  • PDF

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

An Overview of Problems Cyanotoxins Produced by Cyanobacteria and the Solutions Thereby (남조류에서 발생하는 독소의 문제점과 대책)

  • Jeon, Bong-seok;Han, Jisun;Kim, Seog-Ku;Ahn, Jae-Hwan;Oh, Hye-Cheol;Park, Ho-Dong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.657-667
    • /
    • 2015
  • Cyanobacteria frequently dominate the freshwater phytoplankton community in eutrophic waters. Cyanotoxins can be classified according to toxicity as neurotoxin (Anatoxin-a, Anatoxin-a(s), Saxitoxins) or hepatotoxin (microcystins, nodularin, cylindrospermopsin). Microcystins are present within cyanobacterial cells generally, and they are extracted by the damage of cell membrane. It has been reported that cyanotoxins caused adverse effects and they are acculmulated in aquatic oganisms of lake, river and ocean. In natural, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, in process of water treatment, the use of copper sulfate to remove algal cells caused extraction of a mess of microcystins. Microcysitns are removed by physical, chemical and biological methods according to reports. The reduction of nutrients (N and P) inflow is basic method of prevention of cyanobacteria bloom formation. However, it is less effective than investigation because nutrients already present in the eutrophic lake. In natural lake, cyanobacteria bloom are not formed because macrophytes invade from coastal lake by eutrophication. Therefore, a coastal lake has to recover to prevent of cyanobacteria bloom formation.

Indirect Evaluation of Aquatic Animal Diversity in Ilsan Lake through the Analysis of the Growing Condition and Stomach Contents of Largemouth Bass, Micropterus salmoides (큰입배스 Micropterus salmoides의 위 내용물 분석을 통한 일산호수 내 큰입배스의 생육상태 및 수생동물의 다양성 간접 평가)

  • Kim, I-Tae;Park, Jae-Rho;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.953-959
    • /
    • 2013
  • In this study, through the analysis of the growth condition and prey of the largemouth bass, we tried to understand the characteristics of the aquatic animal community depending on the composition and shape of a artificial lake. The evaluation was conducted for Ilsan lake which is one of the largest urban artificial lakes in Korea. Weight gain rate of the Zone III (eco-zone) was more rapid based on the relationship of length and weight of largemouth bass. Total 16 and 9 species of fish were found in each Zone III and Zone I, II (artificial zones), which represented significantly higher diversity of fish species in Zone III than Zone I, II. Index of relative importance(IRI) was more diverse at Zone III and when considering the hunger rate the food stress was more serious at Zone I, II. the proportion of the population of fish, Zacco platypus revealed to be the dominant species, and Squalidus gracilis majimae and Rhinogobius brunneus inhabited only Zone III naturally rich. On account of low prey species diversity of Zone I, II, the Phylum Arthropoda like Heteroptera showed relatively higher prey ratio in stomach of largemouth bass than that of Zone III. It was possible to figure out aquatic animal community characteristics indirectly through analyzing the stomach contents of largemouth bass.

Dynamic Changes of Dissolved Oxygen during Summer Monsoon (하절기 장마동안 용존산소의 역동적 변화)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.213-221
    • /
    • 2000
  • Seasonal oxygen content and deficit rates were evaluated from 17 sites of Taechung Reservoir during 1993${\sim}$1994. In 1993, river inflows peaked during the monsoon in July${\sim}$August and disrupted thermal stratification and anoxic layers in the headwaters, thereby confining the anoxia to the mid-lake and downlake reach. The volume of anoxic water with < 4 mg/l DO comprised only < 10% of the total lake volume in this period. In contrast, during monsoon 1994, 85% of total lake volume was subject to hypoxic conditions with oxygen concentrations < 30% saturation, resulting in massive fishkills (Hypomesus olidus). Relative areal oxygen deficit (RAOD) was -0.024mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1993, whereas it rapidly decreased at the rate of 0.080mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1994. Anoxic factor (AF) showed a same interannual pattern as the RAOD and was greater >50 d in 1994 (76.5 d) than 1993 (21.3 d). Thus, the reservoir showed a river-characteristics (6${\sim}$11 mg/l DO) in 1993 while lacustrine conditions (<4mg/l DO) dominated in 1994. Regression analysis showed that the variation of summer DO was mostly determined (R$^{2}$=0.99, p<0.0001) by inflow. These findings suggest that the primary factor regulating the oxygen content in this system during summer is an intensity of the monsoon rain.

  • PDF