• Title/Summary/Keyword: 호기성분해

Search Result 117, Processing Time 0.025 seconds

Alternative Sludge Treatment Method for Hazardous Odor Minimization (유해성 악취 최소화를 위한 슬러지 대체 처리기법)

  • Son, Hyun-Keun
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.193-197
    • /
    • 2003
  • 슬러지로부터 발생하게 되는 인체에 유해하고 독성이 강한 악취물질들은, 대다수 슬러지내의 단백질, 탄수화물등의 물질들이 미생물의 호기성 및 혐기성 분해과정을 통해서 생성되는 유ㆍ무기 물질들을 포함하게 된다. 슬러지로부터 발생하는 주된 악취물질로서 hydrogen sulfide, methanethiol, dimethyl sulfide, dimethyldisulfide,dimethyltrisulfide등이 발견되어졌는데 이 다섯 종의 악취물질들은 모두가 황을 포함하는 물질들이다. 본 논문에서는 인체에 유해한 슬러지 악취의 강도 및 세기를 결정하고 비교하는 데 이용되어 질 수 있는 odor index(ODI)라는 방식이 제시되어졌다. 세가지 종류의 슬러지, 즉 hypochlorite 용액으로 처리한 슬러지와 향수 물질로 처리한 슬러지 및 아무런 처리를 하지 않은 슬러지 세 종류를 대상으로 30일이 넘는 기간동안 인체에 유해한 악취물질들에 대한 누적 odor index(ODI)값을 생성하여 비교하였다. 아무런 처리를 하지 않은 슬러지에서 가장 높은 odor index(ODI)값들이 나타났으며, 이것은 슬러지 처리에 있어서 심각한 단기 및 장기적인 유해 악취발생 문제가 야기될 수 있음을 나타낸다. 이에 대하여 hypochlorite용액으로 처리한 슬러지로부터는 인체에 유해한 악취 발생을 처리 즉시부터 30일이 넘는 기간동안 측정한계치 이하 단계로 낮출 수 있었다.

Carbohydrate catabolism in cellulolytic strains of cellulomonas, pseudomonas and nocardia (Cellulose 분해호기성 세균의 당 대사 경로)

  • 김병홍
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.28-33
    • /
    • 1987
  • Celluloytic bacteria, -Gram positive, Gram negative and actionmycetes-were used to study their catabolic pathways of carbohydrate. It was found that Embden-Meyerhof-Parnas(EMP) pathway and hexose monophosphate(MHP) shunt were operated in Cellulomonase sp. CS1-1, C. flavigena, and Pseudomonas fluorescens subsp. cellulosa when they were cultured in a glucose containing medium, whilst gluconate was catabolised mainly via Entner-Doudoroff(ED) pathway, and to some extend through HMP shunt. Enzymes of ED pathway in the orgamisms were induced by gluconate. On the other hand Nocardia cellulans catabolised glucose and gluconate via EMP pathway and HMP shunt. The growth rate of N. Cellulans on gluconate were much slower than that on glucose.

  • PDF

Sediment Release Rate of Nutrients from Namyang Reservoir (남양호 퇴적물에서 영양염류 용출 특성 분석)

  • Cho, Young-Cheol;Chung, Se-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1345-1352
    • /
    • 2007
  • To predict the effects of nutrient releasing on the water quality of Namyang Reservoir, nutrient releasing rates from sediments in oxic and anoxic conditions were estimated in a small microcosm. Organics and nitrogens were not released. The releasing pattern of inorganic phosphate and total phosphorus was depend on the oxygen concentration. The releasing rate of inorganic phosphate and total phosphorus in oxic condition was $1.01\sim2.48$ and $2.14\sim3.54$ mg-P/$m^2$/day, respectively. It was high in the upstream sediments indicating the particles containing easily degradable organic compounds are flowed into the area. Because the depth of Namyang Reservoir at the downstream adjacent to the Dam is $7\sim14$ m, the condition of most area of sediment surface will be oxic. Based on these results, the appropriate counterplans are required to reduce phosphorus release in oxic conditions to control water pollution.

The Influence on Compost effect of Livestock manure inoculated peat (니탄(peat)이 가축분의 퇴비효과에 미치는 영향)

  • Nam, Yi;Jung, Soo-Hee;Lee, Sung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • Sawdust, peat, and sawdust+peat were used as bulking agent in the compost production process using three different origin of manure; cow, pig, and chicken. The organic content and individual N, P, K content of the final manure compost were higher when peat or peat+sawdust were used to control the moisture. The carbon to nitrogen ratio and moisture content were low when peat or peat+sawdust were employed. In the case of cow and pig manure compost produced with peat or peat+sawdust, beneficial microorganism content was also higher than that of the manure samples produced with sawdust only. These results indicate that peat can be a useful component in the production of high quality manure compost.

  • PDF

Effects of Rice Straw on the Microflora in Submerged Soil -II. Relation to the Decommposition of Organic Matter (볏짚시용(施用)이 논토양(土壤)의 미생물상(微生物相)에 미치는 영향(影響) -II. 유기물대사(有機物代謝)에 관여(關與)하는 미생물(微生物)과 유기물(有機物)의 분해(分解))

  • Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.289-298
    • /
    • 1984
  • These studies were carried out to investigate the effects of rice straw on microflora in relation to the decomposition of organic matter, and the rate of rice straw decomposition. The number of total bacteria was increased in the first stage, and the number of microorganisms in upper layer was generally larger than lower layer. The number of fungi tended to decline as rice plant grew. Aerobacter among cellulose decomposition bacteria decreased with time, and the number of microorganisms in lower layer was higher than upper layer. The number of glucose decomposition bacteria and sulfate reducing bacteria increased in the submerged soil to which rice straw was applied, but decreased by percolation. the change of manganese oxidizing bacteria seemed not to be affected by rice straw application while they tend to increase as the rice plant grew. The aspect of microorganisms in the percolated water was same that of lower layer, but the number was low as much $10^{-1}$ during the whole stages. The decomposition rate of rice straw applied to submerged soil was about 40 per cent during the rice grew. The decomposition rate of cellulose contained rice straw was about 30 per cent, and lignin was about 60 per cent. The 70-80 per cent of nitrogen remained in the rice straw applied to soil.

  • PDF

Analysis of Producing of Thermostable Alkaline Protease using Thermoactinomyces sp. E79 (Thermoactinomyces sp. E79를 이용한 내열성 Alkaline 단백질 분해효소 생산:환경인자의 영향)

  • 정상원;박성식;박용철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.167-171
    • /
    • 2000
  • Analysis of Production of Thermostable Alkaline Protease using Thermoactinomyces sp. E79. Jung, Sang Won, Sung-Sik Park, Yong-Cheol Park" Tae Kwang Oh2, and Jin-Ho Seo*, Department of Food Science and Technology, Seoul National University, Suwon 441-744, Korea, 1lnterdisciplinary program [or Biochemical Engineering & Biotechnology, Seoul National Univer5it}~ Seoul 151 "7421 Koreal 2Microbial Enzyme RU, Korea Research Institute of Bioscience & Biotechnology, Po. Box 1151 Yusong, Taejon 305"6001 Korea - This research was undertaken to analyze fermentation properties of Thermoactinomyces sp. E79 for production of a thermostable alkaline protease, which is able to specifically hydrolyze defatted soybean meal (DSM) to amino acids. TIle optimum pH for cell growth and protease production was pH 6.7, Thermoactinomyces sp. E79 did not grow at pHlO Among carbon sources tested, soluble starch was the best for protease production, while glucose repressed protease production. Tryptone was found to be the best nitrogen source for cell growth and soytone was good tor protease production. Oxygen transfer rate played an important role in producing thermostable alkaline protease. Ma'<..imum values of 6.58 glL of dry cell weight and 43.0 UJmL of protease activity were obtained in a batch fermentation using a 2.5 L jar fermentor at 1.93 X 102 hr-l of volumetric oxygen transfer coeff'jcient (kLa). Addition of 200 mgIL humic acid to the growth medium resulted in 1.64 times higher protease activity and 1.77 times higher cell growth than the case without humic acid addition.

  • PDF

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

Pre-treatment of River Water Using Biological Aerated Filtration (호기성 생물여과 공정을 이용한 하천수 전처리)

  • Choi, Dong-Ho;Choi, Hyung-Joo;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • When polluted stream water was treated with biological aerated filter(BAF) in pilot plant, all operation with 90, 60, 45 and 30 min of EBCT at fixed $0.1m^3air/m^2min$ of aeration showed 80% or higher treatment efficiency of particle materials(SS, turbidity and Chl.-a) and 85% or higher efficiency of ammonia nitrogen removal. It was thought that, in case of BOD, biological stability may sufficiently be assured with BAF because grade III or IV inflow water was changed to grade I for outflow water. In case of $COD_{Mn}$, about 60% of removal efficiency was found. When the mechanism of the result was investigated, about 30% of COD materials was produced by algae clogged in the reactor. There was almost no biological decomposition because specific substrate utilization rate of algogenic organic materials were $0.0245mg{\cdot}COD_{Mn}/mg{\cdot}VSS{\cdot}day$, thus partial backwashing(washing the media in 1 m upper of the reactor once a day) was required. It is thought that elevation of removal rate about 10% of $COD_{Mn}$ and 5.5% of $BOD_5$ could be obtained with partial backwashing resulting in assurance of biologically more stable raw water and that saving backwashing water may be significant.

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.

The experiment of process efficiency and salt elimination in food waste compost using triple salt (삼중염을 이용한 음식물 쓰레기 퇴비 중 염분제거 및 공정효율화 실험)

  • Kim, Nam-Cheon;Jang, Byung-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • The NaCl contents of food waste composts made by various techniques known up to now were under the level of 1% by fresh weight basis. But these techniques has some problem that is environment pollution from treated water and high equipment cost. The application to agricultural land of food waste compost that is not sufficiently removed NaCl was considered to be improper due to salt accumulation in soils and plant growth inhibition by salt stress. The purpose of this study is to decompose NaCl in food waste compost using triple salt and this method is differ from existing chemical method. Also, reaction of NaCl with triple salt produced KCl that is basic material of potassium fertilizer. Moreover Also, there was temperature rise of average $5^{\circ}C$ as result that apply triple salt in food waste 600 ton in food wast composting productive capacity. Obvious odious smell reduction effect appeared pretreatment process and fermentation process with temperature rise and this is because triple salt activation of aerobe and removes odious smell cause material by salt content decrease effectively.

  • PDF