Annual Conference on Human and Language Technology
/
2016.10a
/
pp.340-341
/
2016
개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.439-441
/
2005
용어의 전문성은 전문용어의 판넬 기준을 정하고 그 계층구조를 밝히는데 유용하다. 본 논문에서는 말뭉치로부터 추출한 한국어 용어의 전문성을 측정하는 효과적인 방법을 제안한다. 말뭉치에서 관형형 전성어미('ㄴ/은/는')가 부여된 전문용어와 함께 출현하는 수식어구는 일반명사의 수식어구보다 제한적인 형태로 나타난다. 이런 점에 착안하여 본 논문에서는 수식어구를 포함하는 문맥정보에 대해 엔트로피를 측정하여 용어의 전문성을 측정하였다. 이를 위해 한국어 수식어구를 분석하고 기존 전문성 측정 방법에서 간과되어진 수식어구 출현빈도를 고려하여 엔트로피를 상대적 비율로 계산함으로써 한국어에 적합한 전문성 측정을 하였다. 400만 어절의 신문 말뭉치에서 추출한 전문용어와 ETRI 시소러스를 이용하여 실험을 해 본 결과 본 논문에서 제안하는 한국어 용어 전문성 측정방법이 효과적임을 알 수 있었다.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.117-120
/
2004
본 고에서는 악성 프로그램을 탐지하기 위해 특정 프로그램 실행시 해당 파일 구조를 분석하여 악성 프로그램을 탐지하기 위해 Michael Weber, Matthew Schmid, Michaei Schatz와 David Geyer에 의해 제안된 실행코드 탐지 방식을 분석하고 있다. 제안된 방식에서는 기존 방법에서 사용하고 있는 악성 프로그램의 시그니처 분석을 통한 탐지 방법과 다르게 윈도우 PE 파일 형태의 파일 구조를 가지고 있는 실행 프로그램의 문맥 분석을 통해 알려지지 않은 악성 프로그램을 탐지함을 목적으로 하고 있다. 제안된 방식에서는 특히 PEAT(Portable Executable Analysis Toolkit)라는 이동 실행 분석 툴 킷을 개발, 사용함으로써 악성프로그램을 탐지 하고 있는데 이 툴 킷은 PE 파일 구조를 가진 임의의 애플리케이션에 대해 악성코드의 존재 여부를 밝힐 수 있는 실행시 구조적 특징을 이용한다.
기계 독해 기술은 기계가 주어진 비정형 문서 내에서 사용자의 질문을 이해하여 답변을 하는 기술로써, 챗봇이나 스마트 스피커 등, 사용자 질의응답 분야에서 핵심이 되는 기술 중 하나이다. 최근 딥러닝을 이용한 기학습 언어모델과 전이학습을 통해 사람의 기계 독해 능력을 뛰어넘는 방법론들이 제시되었다. 하지만 이러한 방식은 사람이 인식하는 질의응답 방법과 달리, 개체가 가지는 의미론(Semantic) 관점보다는 토큰 단위로 분리된 개체의 형태(Syntactic)와 등장하는 문맥(Context)에 의존해 기계 독해를 수행하였다. 본 논문에서는 기존의 높은 성능을 나타내던 기학습 언어모델에 대규모 지식그래프에 등장하는 개체 정보를 함께 학습함으로써, 의미학적 정보를 반영하는 방법을 제시한다. 본 논문이 제시하는 방법을 통해 기존 방법보다 기계 독해 분야에서 높은 성능향상 결과를 얻을 수 있었다.
This paper presents a method for the automatic recognition of pitch accents over syllables. The method that we propose is based on the time-delay recursive neural network (TDRNN). which is a neural network classifier with two different representation of dynamic context: the delayed input nodes allow the representation of an explicit trajectory F0(t) along time. while the recursive nodes provide long-term context information that reflects the characteristics of pitch accentuation in spoken English. We apply the TDRNN to pitch accent recognition in two forms: in the normal TDRNN. all of the prosodic features (pitch. energy, duration) are used as an entire set in a single TDRNN. while in the distributed TDRNN. the network consists of several TDRNNs each taking a single prosodic feature as the input. The final output of the distributed TDRNN is weighted sum of the output of individual TDRNN. We used the Boston Radio News Corpus (BRNC) for the experiments on the speaker-independent pitch accent recognition. π 1e experimental results show that the distributed TDRNN exhibits an average recognition accuracy of 83.64% over both pitch events and non-events.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.05a
/
pp.303-308
/
2000
용언은 그 어간이 여러 문법소와 결합하면서 자동적 음운 변동을 제외한 형태 변동이 있는가, 없는가에 의해 규칙 용언/불규칙 용언으로 구분할 수 있다. 이러한 불규칙 용언은 심성 어휘집에 어떤 형태로 저장되어 있으며, 규칙 용언과는 어떠한 관계가 있는지, 나아가 실어증 환자의 경우에는 정상인에 비해 어떤 행동장애를 보이며, 장애가 있다면 어느 경로의 손상으로 인한 장애인지를 알아보는 것이 본 연구의 목적이다. 이를 위해 이해성 실어증 환자 한 명과 음어적 실행증 현상을 동반한 경미한 정도의 실어증 환자를 피험자로 하였다. 실험 과제는 단어 채워 넣기 과제(word completion task)를 사용하였다. 즉 주어진 기본형 용언을 검사 문장의 문맥에 맞게 활용하여 채워 넣는 것이다. 실험 결과에 의하면 환자들은 규칙용언의 활용(예. 먹다/먹는)과 불규칙 용언 중 형태를 유지한 채로 활용하는 경우(예. 줍다/줍고)에는 거의 오류가 없었으나, 불규칙 용언이 형태 변화를 겪어야 할 경우(예. 줍다/주워)에는 대부분 오류를 보였다. 또 이때는 기본형(basic form)을 그대로 유지하는 오류 방향성을 관찰할 수 있었다. 이는 그간 문법으로 구분되어 오던 규칙 용언/불규칙 용언의 정보 처리보다는 형태 유지/형태 변화 정보 처리의 영향이 크다는 것을 알 수 있다. 특히 이해성 실어증 환자는 전체적인 오류율이 매우 높았는데, 규칙 용언의 경우에도 오류를 보였다. 이때, 용언의 어간에 해당하는 부분에는 오류가 없고, 뒤에 따르는 내용과의 관계를 파악해야 하는 문법 기능소, 즉 연결 어미에서 오류를 보여 정보의 유지, 통합에 문제가 있다는 기존의 연구와도 일치하는 결과를 나타냈다.환자는 시제 선어말 어미를 선택하는데도 어려움을 보임이 확인되었다. 실험 3 역시 실험 1과 실험2에서와 동일하게 처리의 어려움을 보였다. 이러한 실험 결과들은 국어의 존칭과 시제 선어말 어미가 통사부에서 구(XP)와 결합하여 새로운 구를 형성하는 통사적 접사로 해석할 수 있으며 Grodzinsky의 가설을 지지하는 결과를 보여 줌으로서 국어에서도 AgrP, TP, CP 사이의 통사적 위계가 있음을 뒷받침하는 증거가 된다.전처리한 Group 3에서는 IL-2와 IL-4의 수준이 유의성있게 억제되어 발현되었다 (p < 0.05). 이러한 결과를 통하여 T. denticola에서 추출된 면역억제 단백질이 Th1과 Th2의 cytokine 분비 기능을 억제하는 것으로 확인 되었으며 이 기전이 감염 근관에서 발견되는 T. denticola의 치수 및 치근단 질환에 대한 병인기전과 관련이 있는 것으로 사료된다.을 보였다. 본 실험 결과, $Depulpin^{\circledR}은{\;}Tempcanal^{\circledR}와{\;}Vitapex^{\circledR}$에 비해 높은 세포 독성을 보여주공 있으나, 좀 더 많은 임상적 검증이 필요할 것으로 사료된다.중요한 역할을 하는 것으로 추론할 수 있다.근관벽을 처리하는 것이 필요하다고 사료된다.크기에 의존하며, 또한 이러한 영향은 $(Ti_{1-x}AI_{x})N$ 피막에 존재하는 AI의 함량이 높고, 초기에 증착된 막의 업자 크기가 작을 수록 클 것으로 여겨진다. 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.403-408
/
1997
언어의 내적 특성을 반영하는 의미 문체의 검사 및 교정은 언어의 형태적인 면과 관련있는 단순한 철자 검사 및 교정에 비해 더 난해하고 복잡한 양상을 띤다. 본 논문이 제안하는 의미 정보를 이용한 명사 분류 방법은 의미와 문체 오류의 포착과 수정 기능을 향상시키기 위한 방법의 하나이다. 이 논문은 문맥상 용법이 어긋나는 서술어를 교정하기 위해 명사 의미 분류방법을 서술어/논항의 통사 의미적 관계 분석에 이용하여 의미 규칙을 세우는 과정을 서술한다. 여기서 논항인 명사의 의미 정보를 체계적으로 분류하기 위해 시소러스 기법과 의미망을 응용한다. 서술어와 논항 사이의 통사 의미적 관계에 따라 의미 문체 오류를 검사하고 교정함으로써 규칙들을 일반화하여 구축하게 하고 이미 존재하고 있는 규칙을 단순화함으로써 한국어 문법 검사기의 기능을 보완한다.
The previous study of Digital Broadcasting Recommendation system is based on user explicit profiling information. But user profile is always changing and the exact extraction of user profile is very important in recommendation system like Digital TV using many user interactions. This paper is studied of realtime user profiles aggregation through user remote controller input and matching this profiles with contents meta-data like contents genre information, event information, content viewing time. It is not used commercial database system and network communication solution considering embedded system hardware restriction. And it is considered people want different content genre based on watching time. From the results of this paper, there are improvement of user satisfaction of contents recommendation.
Annual Conference on Human and Language Technology
/
2005.10a
/
pp.167-172
/
2005
지금까지 자연언어처리에서의 품사태깅(parts-of-speech tagging) 기술에 대한 연구는 활발히 진행된 반면, 전문용어에 대한 처리 기술은 미비한 점이 많았다. 전문용어에 관련된 연구는 대부분 구축, 표준화, 추출 등에 대한 연구가 많았으나 전문용어 태그 설정과 태깅 기술 연구는 부족한 상황이다. 본 논문에서는 전문용어 태그를 (분야정보: 아이디) 순으로 설정하고 백과사전의 분류 체계를 이용하여 어떤 특정 분야 문서의 전문용어를 자동으로 태깅하는 시스템을 구축하였다. 전문용어 태깅 시스템은 형태소분석기를 사용하지 알고 문맥의 규칙과 조사 어미사전을 이용해 자동으로 태깅을 하게 된다. 이 시스템의 정확률 측정을 위한 정답말뭉치는 웹 상에 공개되어 있는 백과사전 html문서를 이용하였다. 우선 백과사전에 나와있는 용어는 전문용어라고 가정한다. 하나의 문서에는 '용어', '요약', '본문', '이미지', '분류', '참조항목' 등의 정보들이 있다. 이 중 '본문'에는 그 용어에 대한 자세한 설명이 있는데 특정 단어에는 태그로 백과사전 내에 있는 단어를 찾아 볼 수 있게 링크 되어있다. 이 정보를 이용해 태그로 되어있는 것을 설정한 태그로 바꾸고 단계별로 확장 태깅을 해서 정답말뭉치를 만든다. 태깅 시스템과 정답말뭉치를 비교해 정확률을 계산해서 시스템의 성능을 측정하였다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.216-221
/
1996
변형 규칙 기반 품사 태거는 태깅 규칙을 코퍼스로부터 자동 학습할 수 있고, 견고하며 태깅 결과를 이해하고 분석하기가 쉽다는 장점을 갖는다. 이에 최근 한국어 특성을 고려한 변형 규칙 기반 한국어 품사 태거가 개발되었다. 하지만 이 시스템은 오류 어절의 어휘 정보를 사용하지 않으므로 수정 가능 오류에 대한 변형 규칙이 제대로 학습되지 못하며, 변형 규칙 적용 과정에 새로운 오류를 발생시킨다는 문제점이 있다. 이에 본 논문은 오류 어절의 어휘 정보를 참조할 수 있는 세부변형 규칙 추출을 이용한 변형 규칙 기반 한국어 품사 태거의 개선 방안을 제안한다. 어휘 정보를 참조할 수 있는 세부 변형 규칙의 형태는 특정 문맥 C에서 어절 W의 어절 태그 ${\alpha}$를 어절 태그 ${\beta}$로 변형한다와 같다. 제안된 방법은 약 10만 어절 크기의 학습 코퍼스에서 57개의 세부 규칙을 학습하였고, 2만 어절 크기의 실험코퍼스에 적용한 결과 95.6%의 정확도를 보임으로써 기존의 변형 규칙 기반 품사 태거의 정확도를 약 15.4% 향상시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.