• Title/Summary/Keyword: 형태열

Search Result 2,256, Processing Time 0.03 seconds

Manufacturing Techniques of Bronze Seated Bodhisattva Statue of Goseongsa Temple in Gangjin (강진 고성사 청동보살좌상의 제작기술 연구)

  • LEE Seungchan;BAE Gowoon;CHUNG Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.146-159
    • /
    • 2024
  • In this study, a study on the production technology of the Buddha statue and the production of raw material origin was conducted through scientific analysis on the Bronze seated Bodhisattva Statue of Goseongsa Temple, a treasure. As a result of microstructure analysis through a metal microscope, it was confirmed that the microstructure of the Bronze seated Bodhisattva Statue of Goseongsa Temple was a process-type dendritic structure, and the casting structure of bronze was well represented, so it was manufactured through casting. Subsequently, as a result of analyzing the alloy composition ratio through SEM-EDS, it was identified as a ternary alloy with 81.26 wt% of copper (Cu) and 16.42 wt% of tin (Sn) and 1.72 wt% of lead (Pb). The results of the analysis of lead isotope ratios using a thermal ionization mass spectrometer (TIMS) were substituted into the distribution of lead isotope ratios on the Korean Peninsula, it was shown in corresponding to Jeolla-do and Chungcheong-do regions and North and South Gyeongsang Province. This suggests that the raw materials used in their production were likely sourced from the mines around Goseong Temple in Gangjin. Despite the fact that the statue is a medium and large Buddha with a total height of 51 centimeters, 1.72 wt% of lead (Pb) was found as a result of alloy composition ratio analysis, which showed a similar composition to the lead content ratio of small bronze and gilt-bronze Buddha statues. Therefore, we compared and analyzed the results of the analysis of the composition ratio of the alloys of bronze and gilt bronze statues, which has been scientifically analyzed with a compositional age similar to that of the Bronze seated Bodhisattva Statue of Goseongsa Temple. Comparison results, Various factors, such as the size of the Buddha statue as well as its stylistic characteristics and the age of composition, may exist in determining the alloy composition ratio of the bronze and gilt bronze Buddha statues, and it was confirmed that the alloy composition ratio or casting technology was properly adjusted when the Buddha statue was created. In other words, it is judged that a more comprehensive system of Buddha statue production technology should be investigated by conducting archaeological and art history studies on stylistic characteristics and age of composition, as well as scientific analysis results such as observation of internal structure, microstructure observation, and analysis of alloy composition ratio using radiation transmission irradiation.

Studies on the Effect of Low Temperature Treatment at Meiotic, Heading and Seedling Stage in Paddy Rice (수도의 장해형 냉해에 관한 연구)

  • Hong-Suk Lee;Hyung-Yull Cho;Pyeong-Ki Yim;Hoon Heu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.15
    • /
    • pp.85-97
    • /
    • 1974
  • In order to clarify the inducing conditions and cause of sterility in rice plants, 4 varieties were cooled at 3 different levels of temperature combined with 3 different levels of treatment period. And 19 varieties were tested to examine the varietal difference of cold resistance. The results obtained were summarized as follows; 1. There were significant varietal differences in the effect of cooling treatment at meiotic stage. Suwon 213-1 was induced heavy sterility by 3 day cooling treatment at 17.5$^{\circ}C$ whereas Hayayuki, Nongpaik and Jinheung were induced a little sterility by 3 day cooling treatment at 15$^{\circ}C$ and 5 day treatment at 17.5$^{\circ}C$. The per cent of grain fertility was correlated significantly with the delayed days to heading, the degree of panicle extraction (Suwon 213-1, Nongpaik, Jinheung), culm length (Nongpaik, Suwon 213-1), and Auricle distance (Suwon 213-1). The degree of sterility was able to be estimated from the linear regression equation between the degree of panicle extraction (distance from panicle neck to flag leaf) and fertility percentage. In the case of heavy cold damage by the treatment of low temperature at meiotic stage, the rice plant had somewhat lower pollen density per anther, small and ununiform anther and pollen in size, and more sterile pollen grains. Suwon 213-1 showed anthesis in almost all spikelets, while Nongpaik, Jinheung and Hayayuki indicated considerable number of indehisced anther at 5 days after heading. 2. The fertility were not generally higher in cooling treatment at heading stage than at meiotic stage treatment. And significant correlation was found between the percentage of grain fertility treated at above two stages. Nongpaik and Jinheung were not affected in percentage of fertility by 5 day treatment at 15$^{\circ}C$ when these were treated at heading stage. Indehisced anthers were not found in Suwon 213-1 and Hayayuki, but Nongpaik and Jinheung showed more anthers which did not show anthesis 3. There was different varietal response to low temperature which was indicated by the decrease of grain fertility resulted from cooling treatment at meiotic stage. Jaekeun and Jinheung did not show low fertility but Milseong, Suwon 210, Satominoli and Suwon 213-1 showed outstanding decrease in fertility percentage by the cooling treatment at meiotic stage. The varieties which had low fertility were likely to have low pollen density per anther, abnormal anthers, small size po]]en grains and many sterile pollens. 4. Remarkable varietal difference of cold resistance was found in heading stage cooling treatment. Nongpaik, Jinheung, Jaekeun, Paltal, Akibare, Milseung and Palkeong were not affected in grain fertility by cooling treatments but Nonglimna No. 1, Suseong, Hayayuki, Suwon 213-1 and Suwon 210 showed significantly high sterility as treated by cool temperature. Most of the varieties showed higher fertility by cooling treatment at heading stage than meiotic stage but Hayayuki, Suseong and Nonglimna No.1 showed lower fertility when these were treated at heading stage than meiotic stage. There were two grops of varieties in the response to cooling treatment, one was somewhat non-anthesised and the other showed full anthesis. 5. In cold injury test of young seedlings, the result of observation was not accorded with the degree of growth inhibition. As a general, Palkeum and Suseong were highly torelant to cool temperature but Suwon 213-1, Jaekeun, Paltal, Shirogane, Palkeong, Mankyung were highly susceptible. 6. There is no significant correlation between the degree of young seedling cold damage and or the degree of growth retardation at seedling stage and grain fertility resulted from coding treatment both heading and meiotic stage.

  • PDF

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

The Study on Conservation and Management of Natural Habitat of Spleenworts on Samdo Island (Asplenium antiquum Makino), Jeju (Natural Monument No. 18) (천연기념물 제주 삼도 파초일엽 자생지 생육 및 관리 현황 연구)

  • Shin, Jin-Ho;Kim, Han;Lee, Na-Ra;Son, Ji-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.280-291
    • /
    • 2019
  • A. antiquum, first observed in Jeju Samdo Island in 1949, was designated as the Natural Monument No. 18 in December 1962 in recognition of its academic value. In Korea, it grows in nature only in Samdo in Jeju Island. Although its natural habitat was greatly damaged and almost destroyed due to firewood, stealing, etc. After the emancipation, it has been maintained by the transplantation and restoration. The site observed by this study has been managed as a restricted area since 2011. Since it has been about 20 years since the restoration of the native site in the 2000s, it is necessary to check the official management history records, such as the origin of transplantation and restoration to monitor the changes in the growth status and to control the habitat. As the results of this study, we have secured the records of cultural property management history, such as the identification of native species and the transplantation and restoration records. We also examined the change of the growth and development of A. antiquum 20 years after the restoration. There are no official records of the individuals transplanted to the restored natural habitat of A. antiquum in the 1970s and 1980s, and there was a controversy about the nativeness of those individuals that were restored and transplanted in 1974 since they were Japanese individuals. The studies of identifying native as the results of this study, we have secured the records of cultural property management history, such as the identification of native species and the transplantation and restoration records. We also examined the change of the growth and development of A. antiquum 20 years after the restoration. There are two sites in natural habitat in Samdo Island. A total of 65 individuals grow in three layers on three stone walls in a site while 29 individuals grow in two columns in the other site. A. antiquum grows in an evergreen broad-leaved forest dominated by Neolitsea sericea, and we did not find any other individuals of naturally growing A. antiquum outside the investigated site. This study checked the distribution of A. antiquum seedlings observed initially after the restoration. There were more than 300 seedling individuals, and we selected three densely populated sites for monitoring. There were 23 A. antiquum seedlings with 4 - 17 leaves per individual and the leaf length of 0.5 - 20 cm in monitoring site 1. There were 88 individuals with 5 - 6 leaves per individual and the leaf length of 1.3 - 10.4 cm in monitoring site 2 while there were 22 individuals with 5 - 9 leaves per individual and the leaf length of 4.5 - 12.1 cm in monitoring site 3. Although the natural habitat of A. antiquum was designated as a restricted public area in 2011, there is a high possibility that the habitat can be damaged because some activities, such as fishing and scuba diving are allowed. Therefore, it is necessary to enforce the law strictly, to provide sufficient education for the preservation of natural treasures, and to present accurate information about cultural assets.

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.