• Title/Summary/Keyword: 형태소 품사 태거

Search Result 22, Processing Time 0.02 seconds

Porting POSTAG using Part-Of-Speech TagSet Mapping (품사 태그 세트의 매핑을 이용한 한국어 품사 태거 (POSTAG) 이식)

  • Kim, Jun-Seok;Shim, Jun-Hyuk;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.484-490
    • /
    • 1999
  • 품사 태그세트 매핑은 서로 다른 품사 태그세트로 태깅되어 있는 대량의 코퍼스들로부터 정보를 얻고 또한 제공함을 통해 코퍼스의 재사용성(reusability)을 높이는데 유용하게 사용된다. 본 논문은 포항공대 자연언어처리 연구실의 자연언어처리 엔진(SKOPE)의 품사 태거(POSTAG)에서 사용되는 태그세트와 한국전자통신연구원의 표준 태그세트 간의 양방향 태그세트 매핑을 다룬다. 매핑을 통해 표준태그세트로 태깅된 코퍼스로부터 POSTAG를 위한 대용량 학습자료를 얻고 POSTAG 가 두 가지 태그세트로 결과를 출력할 수 있다. 특히 한국어 태그세트 매핑에서 발생할 수 있는 여러 가지 문제점들, 즉 사전 표제어 차이 (형태소 분할 차이), 태그 할당 차이, 축약 처리 차이 등과 그것들의 기계적인 해결책을 살펴보고, 태그세트 매핑의 정확도를 측정하기 위해서 매핑 전과 후의 태깅 시스템의 정확도를 서로 비교함으로써 매핑의 정확도를 측정하는 실험을 수행하였다. 본 자동 매핑 방법을 반영한 POSTAG 는 제 1회 형태소 분석기 평가 대회(MATEC'99)에 적용되어 성공적으로 사용되었다.

  • PDF

Morphological Analyzer of Yonsei Univ., morany: Morphological Analysis based on Large Lexical Database Extracted from Corpus (연세대 형태소 분석기 morany: 말뭉치로부터 추출한 대량의 어휘 데이터베이스에 기반한 형태소 분석)

  • Yoon, Jun-Tae;Lee, Chung-Hee;Kim, Seon-Ho;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.92-98
    • /
    • 1999
  • 본 논문에서는 연세대학교 컴퓨터과학과에서 연구되어 온 형태소 분석 시스템에 대해 설명한다. 연세대학교 자연 언어 처리 시스템의 기본적인 바탕은 무엇보다도 대량의 말뭉치를 기반으로 하고 있다는 점이다. 예컨대, 형태소 분석 사전은 말뭉치 처리에 의해 재구성 되었으며, 3000만 어절로부터 추출되어 수작업에 의해 다듬어진 어휘 데이터베이스는 형태소 분석 결과의 상당 부분을 제한하여 일차적인 중의성 해결의 역할을 담당한다. 또한 복합어 분석 역시 말뭉치에서 얻어진 사전을 바탕으로 이루어진다. 품사 태깅은 bigram hmm에 기반하고 있으며 어휘 규칙 등에 의한 후처리가 보강되어 있다. 이렇게 구성된 형태소 분석기 및 품사 태거는 구문 분석기와 함께 연결되어 이용되고 있다.

  • PDF

KTAG99: Highly-Adaptable Koran POS tagging System to New Environments (KTAG99: 새로운 환경에 쉽게 적응하는 한국어 품사 태깅 시스템)

  • Kim, Jae-Hoon;Sun, Choong-Nyoung;Hong, Sang-Wook;Lee, Song-Wook;Seo, Jung-Yun;Cho, Jeong-Mi
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.99-105
    • /
    • 1999
  • 한국어 정보처리를 위한 언어정보는 응용 분야에 따라 큰 차이를 보인다. 특히 말뭉치를 이용한 연구에서는 언어정보가 달라질 때마다 시스템을 새로 구성해야 하는 어려움이 있다. 본 논문에서는 이와 같은 어려움을 다소 완화시키기 위해 새로운 환경에 잘 적응할 수 있는 한국어 품사 태깅 시스템에 관해서 논한다. 본 논문에서는 이 시스템을 KTAG99라고 칭한다. KTAG99는 크게 실행부와 학습부로 구성되었다. 한국어 품사 태깅을 위한 실행부는 고유명사 추정기, 한국어 형태소 분석기, 통계기반 품사 태거, 품사 태깅 오류교정기로 구성되었으며, 실행부에서 필요한 언어정보를 추출하는 학습부는 고유명사 추정규칙 추출기, 형태소 배열규칙 추출기, 사전 추출기, 확률정보 추정기, 품사 태깅 오류수정 규칙 추정기로 구성되었다. KTAG99에서 필요한 언어정보의 대부분은 학습 말뭉치로부터 추출되거나 추정되기 때문에 아주 짧은 시간 내에 새로운 환경에 적응할 수 있다.

  • PDF

A Morph Analyzer For MATES/CK (중한 기계 번역 시스템을 위한 형태소 분석기)

  • 강원석;김지현;송영미;송희정;황금하;채영숙;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.331-336
    • /
    • 2000
  • MATES/CK는 기계번역 시스템에서 전통적으로 사용하고 있는 세 단계(분석/변환/생성)에 의해서 중한 번역을 수행하는 시스템이다. MATES/CK는 시스템 성능을 높히기 위해 패턴 기반과 통계적 정보를 이용한다. 태거(Tagger)는 중국어 단어 분리를 최장일치법으로 수행하기 때문에 일부 단어에 대해 오류를 범하게 되고 품사(POS : Part Of Speech) 태킹 시 확률적 정보만 이용하여 특정 단어가 다 품사인 경우 그 단어에 대해 특정 품사만 태깅되는 문제점이 발생한다. 또한 중국어 및 외국어 인명 및 지명에 대한 미등록들에 대해서도 올바른 결과를 도출하지 못한다. 사전에 있어서 텍스트 기반으로 존재하여 이를 관리하기에 힘이 든다. 본 논문에서는 단어 분리 오류 및 품사 태깅 오류를 해결하기 위해 중국어 태킹 제약 규칙을 적용하는 방법을 제시하고 중국어 및 외국어 인명/지명에 대한 미등록어 처리방법을 제시한다. 또한 중국어 사전 관리에 대해 알아본다.

  • PDF

Multilingual Named Entity Recognition with Limited Language Resources (제한된 언어 자원 환경에서의 다국어 개체명 인식)

  • Cheon, Min-Ah;Kim, Chang-Hyun;Park, Ho-min;Noh, Kyung-Mok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.143-146
    • /
    • 2017
  • 심층학습 모델 중 LSTM-CRF는 개체명 인식, 품사 태깅과 같은 sequence labeling에서 우수한 성능을 보이고 있다. 한국어 개체명 인식에 대해서도 LSTM-CRF 모델을 기본 골격으로 단어, 형태소, 자모음, 품사, 기구축 사전 정보 등 다양한 정보와 외부 자원을 활용하여 성능을 높이는 연구가 진행되고 있다. 그러나 이런 방법은 언어 자원과 성능이 좋은 자연어 처리 모듈(형태소 세그먼트, 품사 태거 등)이 없으면 사용할 수 없다. 본 논문에서는 LSTM-CRF와 최소한의 언어 자원을 사용하여 다국어에 대한 개체명 인식에 대한 성능을 평가한다. LSTM-CRF의 입력은 문자 기반의 n-gram 표상으로, 성능 평가에는 unigram 표상과 bigram 표상을 사용했다. 한국어, 일본어, 중국어에 대해 개체명 인식 성능 평가를 한 결과 한국어의 경우 bigram을 사용했을 때 78.54%의 성능을, 일본어와 중국어는 unigram을 사용했을 때 각 63.2%, 26.65%의 성능을 보였다.

  • PDF

Multilingual Named Entity Recognition with Limited Language Resources (제한된 언어 자원 환경에서의 다국어 개체명 인식)

  • Cheon, Min-Ah;Kim, Chang-Hyun;Park, Ho-min;Noh, Kyung-Mok;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.143-146
    • /
    • 2017
  • 심층학습 모델 중 LSTM-CRF는 개체명 인식, 품사 태깅과 같은 sequence labeling에서 우수한 성능을 보이고 있다. 한국어 개체명 인식에 대해서도 LSTM-CRF 모델을 기본 골격으로 단어, 형태소, 자모음, 품사, 기구축 사전 정보 등 다양한 정보와 외부 자원을 활용하여 성능을 높이는 연구가 진행되고 있다. 그러나 이런 방법은 언어 자원과 성능이 좋은 자연어 처리 모듈(형태소 세그먼트, 품사 태거 등)이 없으면 사용할 수 없다. 본 논문에서는 LSTM-CRF와 최소한의 언어 자원을 사용하여 다국어에 대한 개체명 인식에 대한 성능을 평가한다. LSTM-CRF의 입력은 문자 기반의 n-gram 표상으로, 성능 평가에는 unigram 표상과 bigram 표상을 사용했다. 한국어, 일본어, 중국어에 대해 개체명 인식 성능 평가를 한 결과 한국어의 경우 bigram을 사용했을 때 78.54%의 성능을, 일본어와 중국어는 unigram을 사용했을 때 각 63.2%, 26.65%의 성능을 보였다.

  • PDF

The Layered Structural Tagging Program for Seaching (언어자료 검색을 위한 계층구조형 형태소 분석 프로그램)

  • Kang, Yong-Hee
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.89-96
    • /
    • 2001
  • 1999년 제1회 형태소 분석기 및 품사태거 평가 워크숍 이후 표준안에 대한 새로운 대안이나 문제제기등을 제시한 논문은 전무하다. 본 연구에서는 평가대회 참가 이후 표준안을 수정한 새로운 유형의 형태소 분석 프로그램을 제작하여 그 실용성과 앞으로의 발전 가능성과 문제점을 밝혀, 계층구조형의 형태소분석 시스템을 채택하고 있는 일본의 JUMAN을 참조 새로운 유형의 형태소 분석형식을 제시한다. 본 연구는 일본방송협회 방송기술연구소(이하 NHK기술 연구소)의 의뢰에 인한 것이며 어절단위의 표준안과 다른 형태소 단위를 기본요소로 삼고 있으며 활용형을 갖고 있는 용언에 대해서는 활용형의 전개를 하고 있다. 어절단위로 탈피한 이유는 형태소 분석의 기본요소로써 어절단위 보다는 형태소 단위를 기준으로 삼는 것이 생산성이 높다고 생각된다. 어절정보와 문장정보는 XML(extensible makrup language)등의 별도의 정보를 주는 방법을 채택했다. 음절말음이 자음인지 모음인지의 음운 정보에 따라 활용형을 차별했으며 표준안과 달리 명사의 종류와 개념을 세분화했다. 아울러 조사와 어미등의 검색어와 함께 음절을 형성하고 있는 비검색어 대상은 배제하는 프로그램과 표준안의 어절방식으로 출력하는 3가지 프로그램을 작성했다. 본 연구에서는 계층구조의 형태소분석 프로그램의 가능성과 한국어의 특성을 고려한 출력항목등을 고찰하는 것을 목적으로 한다.

  • PDF

The Korean Part-of-speech Tagging Workbench for Tagged Corpus Construction (품사태그부착 코퍼스 구축을 위한 한국어 품사태깅 워크벤치)

  • Park, Young-C.;Kim, Nam-Il;Huh, Wook;Nam, Ki-Chun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.94-101
    • /
    • 1997
  • 한국어의 언어분석을 위한 가공코퍼스의 하나인 품사부착 코퍼스는 형태소 언어분석의 기초가 되는 자료로서 각종 언어분석 모델의 학습자료와 관측자료 또는 검증자료로서 중요한 역할을 한다. 품사부착 코퍼스의 구축은 많은 노력과 시간이 요구되는 어려운 작업이다. 기존의 구축방법은 자동 태거의 결과를 일일이 사람이 확인해 가면 오류를 발견하고 수정하는 단순 작업이었다. 이러한 단순 작업은 한번 수정된 자동태거의 반복적 오류, 미등록어에 의한 오류 들을 계속적으로 수정해야하는 비효율성을 내포하고 있었다. 본 논문에서는 HMM기반의 자동 태거를 사용하여 1차적으로 한국어 문서를 자동 태깅한다. 자동 태깅 결과로부터 규칙기반의 오류 수정을 추가적으로 행한다. 이렇게 구축된 결과를 사용자에게 제시하여 최종 오류를 수정하고 이를 앞으로의 태깅작업에 반영하는 품사부착 워크벤치에 대해 기술한다.

  • PDF

A Morph Analyzer For MATES/CK (중한 기계 번역 시스템을 위한 형태소 분석기)

  • Kang, Won-Seok;Kim, Ji-Hyoun;Song, Young-Mi;Song, Hee-Jung;Huang, Jin-Xia;Chae, Young-Soog;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.331-336
    • /
    • 2000
  • MATES/CK는 기계번역 시스템에서 전통적으로 사용하고 있는 세 단계(분석/변환/생성)에 의해서 중한 번역을 수행하는 시스템이다. MATES/CK는 시스템 성능을 높이기 위해 패턴 기반과 통계적 정보를 이용한다. 태거(Tagger)는 중국어 단어 분리를 최장일치법으로 수행하기 때문에 일부 단어에 대해 오류를 범하게 되고 품사(POS : Part Of Speech) 태깅 시 확률적 정보만 이용하여 특정 단어가 다 품사인 경우 그 단어에 대해 특정 품사만 태깅되는 문제점이 발생한다. 또한 중국어 및 외국어 인명 및 지명에 대한 미등록들에 대해서도 올바른 결과를 도출하지 못한다. 사전에 있어서 텍스트 기반으로 존재하여 이를 관리하기에 힘이 든다. 본 논문에서는 단어 분리 오류 및 품사 태깅 오류를 해결하기 위해 중국어 태깅 제약 규칙을 적용하는 방법을 제시하고 중국어 및 외국어 인명/지명에 대한 미등록어 처리방법을 제시한다. 또한 중국어 사전 관리에 대해 알아본다.

  • PDF

The structure and features of the LGKMA (LGKMA의 구조 및 특성)

  • Kwak, Jong-Geun;Eun, Zong-Zin;Kang, Yun-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.137-144
    • /
    • 1999
  • LGKMA 시스템은 형태소 분석기와 품사 태거 및 명사 추출기로 구성되며, LG 종합기술원에서 연구 개발 중인 다국어 정보 검색, 음성 합성, 개인정보처리 에이전트 및 디지털 TV의 프로그램 안내문을 분석, 검색하는 EPG(Electronic Program Guide) 응용 둥 다양한 응용 프로그램에서 사용되고 있다. 본 논문에서는 형태소 분석기와 태거의 기반 기술보다는 LGKMA(LG Korean Morphological Analyser)의 전반적인 구조와 다른 시스템과 비교했을 때의 특성, 그리고 실제 응용되는 사례를 소개하고자 한다. 또 표준화를 위해서 열렸던 MATEC99에 참가하기 위해서 수행했던 작업들을 보고한다.

  • PDF