• Title/Summary/Keyword: 형태소 임베딩

Search Result 31, Processing Time 0.027 seconds

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

Effective Korean POS Tagging for Typing Errors Using the Concatenation of Jamo and Syllable Embedding (자모 및 음절 임베딩 결합을 이용한 오타에 효과적인 한국어 형태소 분석)

  • Kim, Hyemin;Yang, Seon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.574-579
    • /
    • 2018
  • 본 논문에서는 한국어 형태소 분석 시스템을 제안하는데, 연구 목표는 오타 없는 문서를 대상으로 한 경우에도 높은 성능을 유지하면서, 동시에 오타가 있는 문서에서도 우수한 성능을 산출하는 것이다. 실험은 크게 두 종류로 나누어서 진행된다. 주 실험인 첫 번째 실험에서는, 자모 임베딩과 음절 임베딩을 결합(concatenate)한 벡터를 입력으로 Bidirectional LSTM CRFs을 수행함으로써, 세종말뭉치 대상으로 어절 정확도 97%, 그리고 1, 2, 5 어절마다 오타가 출현한 경우에서도 각각 80.09%, 87.53%, 92.49%의 높은 성능을 산출하였다. 추가 실험인 두 번째 실험에서는, 실생활에서 자주 발생하는 오타들을 집계하여 그 중에서 11가지 오타 유형을 선정 후, 각 유형에 대해 변환된 임베딩 벡터를 적용함으로써, 해당 오타를 포함한 문장에서 93.05%의 우수한 성능을 산출하였다.

  • PDF

Development of chatting program using social issue keyword information (사회적 핵심 이슈 키워드 정보를 활용한 채팅 프로그램 개발)

  • Yoon, Kyung-Suob;Jeong, Won-Hyeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.307-310
    • /
    • 2020
  • 본 논문에서 이슈 키워드 추출을 위해 텍스트 마이닝(Text Mining) 기술을 요구한다. 사회적 이슈 키워드를 추출하기 위해 키워드 수집 모델이 되는 사이트에서 크롤링(crawling)을 수행한 뒤, 형태소 단위 의미있는 단어를 수집하기 위해 형태소 분석(morphological analysis)을 수행한다. 한국어 형태소 분석을 위해 파이썬의 코엔엘파이(KoNLPy) 패키지를 활용한다. 형태소 분석을 통해 나뉘어진 단어에서 통계를 내어 이슈 키워드 추출한다. 이슈 키워드를 뒷받침할 연관 단어를 분석하기 위해 단어 임베딩(Word Embedding)을 수행한다. 단어 임베딩 수행을 위해 Word2Vec 모델 중 Skip-Gram 방법론을 적용하여 연관 단어를 분석하도록 개발하였다. 웹 소켓(Web Socket) 통신을 통한 채팅 프로그램의 상단에 분석한 이슈 키워드와 연관 단어를 출력하도록 개발하였다.

  • PDF

Sentiment Analysis using Robust Parallel Tri-LSTM Sentence Embedding in Out-of-Vocabulary Word (Out-of-Vocabulary 단어에 강건한 병렬 Tri-LSTM 문장 임베딩을 이용한 감정분석)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • The exiting word embedding methodology such as word2vec represents words, which only occur in the raw training corpus, as a fixed-length vector into a continuous vector space, so when mapping the words incorporated in the raw training corpus into a fixed-length vector in morphologically rich language, out-of-vocabulary (OOV) problem often happens. Even for sentence embedding, when representing the meaning of a sentence as a fixed-length vector by synthesizing word vectors constituting a sentence, OOV words make it challenging to meaningfully represent a sentence into a fixed-length vector. In particular, since the agglutinative language, the Korean has a morphological characteristic to integrate lexical morpheme and grammatical morpheme, handling OOV words is an important factor in improving performance. In this paper, we propose parallel Tri-LSTM sentence embedding that is robust to the OOV problem by extending utilizing the morphological information of words into sentence-level. As a result of the sentiment analysis task with corpus in Korean, we empirically found that the character unit is better than the morpheme unit as an embedding unit for Korean sentence embedding. We achieved 86.17% accuracy on the sentiment analysis task with the parallel bidirectional Tri-LSTM sentence encoder.

KoELMo: Deep Contextualized word representations for Korean (KoELMo: 한국어를 위한 문맥화된 단어 표상)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.296-298
    • /
    • 2018
  • 기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.

  • PDF

Sentimental Analysis using the Phoneme-level Embedding Model (음소 단위 임베딩 모형을 이용한 감성 분석)

  • Hyun, Kyeongseok;Choi, Woosung;Jung, Soon-young;Chung, Jaehwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1030-1032
    • /
    • 2019
  • 형태소 분석을 통하여 한국어 문장을 형태소 단위의 임베딩 및 학습 관련 연구가 되었으나 최근 비정형적인 텍스트 데이터의 증가에 따라 음소 단위의 임베딩을 통한 신경망 학습에 대한 요구가 높아지고 있다. 본 논문은 비정형적인 텍스트 감성 분석 성능 향상을 위해 음소 단위의 토큰을 생성하고 이를 CNN 모형을 기반으로 다차원 임베딩을 수행하고 감성분석을 위하여 양방향 순환신경망 모델을 사용하여 유튜브의 비정형 텍스트를 학습시켰다. 그 결과 텍스트의 긍정 부정 판별에 있어 90%의 정확도를 보였다.

Eojeol-based Embedding for Korean Erroneous Sentence Classification in Korean Chatbot (한국어 챗봇에서의 오류에 강건한 한국어 문장 분류를 위한 어절 단위 임베딩)

  • Choi, DongHyun;Park, IlNam;Shin, Myeongcheol;Kim, EungGyun;Shin, Dong Ryeol
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.43-48
    • /
    • 2019
  • 본 논문에서는 한국어 챗봇에서의 문장 분류 시스템에 대하여 서술한다. 텍스트를 입력으로 받는 한국어 챗봇의 경우, 때때로 입력 문장에 오타나 띄어쓰기 오류 등이 포함될 수 있고, 이러한 오류는 잘못된 형태소 분석 결과로 이어지게 된다. 잘못된 형태소 분석 결과로 인한 문장 분류의 오류를 줄이기 위하여, 본 논문에서는 새로운 통합 어절 임베딩 방식을 제안한다. 통합 어절 임베딩 방식의 단점을 보완하고 성능을 향상시키기 위하여, 두 가지의 말뭉치 노이즈 추가 방법이 별도로 제안되었다. 실험 결과에 따르면, 본 논문에서 제안된 시스템은 오류를 포함한 한국어 문장 분류 문제에서 기존 시스템과 비교하여 문장 단위 정확률 기준으로 23 %p의 성능 향상을 보였다.

  • PDF

Automatic Bias Classification of Political News Articles by using Morpheme Embedding and SVM (형태소 임베딩과 SVM을 이용한 뉴스 기사 정치적 편향성의 자동 분류)

  • Cho, Dan-Bi;Lee, Hyun-Young;Park, Ji-Hoon;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.451-454
    • /
    • 2020
  • 딥러닝 기술을 이용한 정치적 성향의 편향성 분류를 위하여 신문 뉴스 기사를 수집하고, 머신러닝을 위한 학습 데이터를 구축하였다. 학습 데이터의 구축은 보수 성향과 진보 성향을 대표하는 6개 언론사의 뉴스에서 정치적 성향을 이진 분류 데이터로 구축하였다. 뉴스 기사의 수집 방법으로 최근 이슈들 중에서 정치적 성향과 밀접하게 관련이 있는 키워드 15개를 선정하고 이에 관한 뉴스 기사들을 수집하였다. 그 결과로 11,584개의 학습 및 실험용 데이터를 구축하였으며, 정치적 편향성 분류를 위한 머신러닝 모델을 설계하였다. 머신러닝 기법으로 학습 및 실험을 위해 형태소 단위의 임베딩을 이용하여 문장 및 문서 임베딩으로 확장하였으며, SVM(Support Vector Machine)을 이용하여 정치적 편향성 분류 실험을 수행한 결과로 75%의 정확도를 달성하였다.

A typing error-robust Korean POS tagging using Hangul Jamo combination-based embedding (오타에 강건한 자모 조합 임베딩 기반 한국어 품사 태깅)

  • Seo, Dae-Ryong;Chung, Youjin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.203-208
    • /
    • 2017
  • 본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.

  • PDF