• Title/Summary/Keyword: 형태소 원형복원

Search Result 15, Processing Time 0.015 seconds

Multi-level Morphology and Morphological Analysis Model for Korean (다층 형태론과 한국어 형태소 분석 모델)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.140-145
    • /
    • 1994
  • 형태소 분석은 단위 형태소를 분리한 후에 변형이 일어난 형태소의 원형을 복원하고, 분리된 단위 형태소들로부터 단어 형성 규칙에 맞는 연속된 형태소들을 구하는 과정이다. 이러한 일련의 분석 과정은 독립적인 특성이 강하면서 각 모듈이 서로 밀접하게 연관되어 있으므로 Two-level 모델에서는 형태론적 변형뿐만 아니라 형태소 분리 문제를 통합 규칙으로 처리하고 있다. 그러나 한국어에 Two-level 모델을 적응해 보면 형태소 분리와 형태론적 변형이 복합되어 있어서 교착어의 특성과 관계되는 단어 유형을 분석할 때 비효율적인 요소가 발견된다. 따라서 본 논문에서는 교착어인 한국어의 형태소 분석시에 발생하는 문제점들을 해결하는데 적합한 방법론으로 다층 형태론(multi-level morphology)과 다단계 모델(multi-level model)을 제안한다.

  • PDF

Construction of Partial Word Morpheme Dictionary based on Tagged Corpus and Korean Morphological Analysis (말뭉치 기반 부분 어절 기분석 사전의 구축과 형태소 분석)

  • Shin, Joon-Choul;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.67-72
    • /
    • 2011
  • 기존의 말뭉치 기반 한국어 형태소 분석 방법은 대용량의 어절 기분석 사전을 사용하여 분석하고, 그 사전에 없는 어절은 코드 변환, 형태소 분리, 원형 복원 규칙 적용 등을 거치는 복잡한 분석 방법을 통해 후보들을 생성했다. 이 복잡한 분석 방법은 제작과 유지보수, 실행 관점 모두에서 효율적이지 못하며 정확률을 낮추고 속도를 느리게 하는 요인이 된다. 이런 문제를 해결하기 위해 부분 어절의 기분석 사전을 구축하여 사용하는 방법이 연구되었다. 본 논문에서는 대용량의 분석 말뭉치를 통해 부분 어절의 기분석 사전을 구축하고 형태소 분석에 사용하는 방법을 제안한다. 세종 말뭉치로 실험한 결과 재현율이 99.05%였으며, 품사 및 동형이의어 태깅 정확률은 96.76%였다.

  • PDF

Sequence-to-sequence based Morphological Analysis and Part-Of-Speech Tagging for Korean Language with Convolutional Features (Sequence-to-sequence 기반 한국어 형태소 분석 및 품사 태깅)

  • Li, Jianri;Lee, EuiHyeon;Lee, Jong-Hyeok
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • Traditional Korean morphological analysis and POS tagging methods usually consist of two steps: 1 Generat hypotheses of all possible combinations of morphemes for given input, 2 Perform POS tagging search optimal result. require additional resource dictionaries and step could error to the step. In this paper, we tried to solve this problem end-to-end fashion using sequence-to-sequence model convolutional features. Experiment results Sejong corpus sour approach achieved 97.15% F1-score on morpheme level, 95.33% and 60.62% precision on word and sentence level, respectively; s96.91% F1-score on morpheme level, 95.40% and 60.62% precision on word and sentence level, respectively.

Classification and Disambiguation of Morphological Ambiguity of the Korean Language (한국어의 형태론적 모호성 유형 및 해결 방안)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.83-87
    • /
    • 1997
  • 한국어는 실질형태소와 형식형태소가 결합되는 교착어라는 특성 때문에 품사 모호성을 비롯한 여러 가지 유형의 형태론적 모호성이 발생한다. 형태론적 모호성 해결의 관점에서 형태론적 모호성을 한국어의 특성에 따라 어근 유형 모호성, 형태소 분리 모호성, 형태소 길이 모호성, 불규칙 용언의 원형 복원 모호성, '아/에/이' 탈락 모호성 등으로 분류한다. 이 때 임의의 두 분석 결과에서 발생하는 모호성이 특정 유형에만 속하도록 모호성 유형들을 서로 독립적으로 정의한다. 또한 품사 모호성을 계층적 품사 분류 체계에 따라 $1{\sim}3$차적 품사 모호성으로 구분하고 국어사전에서 발견되는 품사 모호성을 분석한다. 이를 기반으로 형태론적 모호성의 유형을 단어 내에서 해결 가능한 것과 그렇지 않은 것으로 구분하여, 단어 내에서 해결 가능한 모호성을 해결하는 방법을 제안한다.

  • PDF

High Speed Korean Morphological Analysis based on Adjacency Condition Check (인접 조건 검사에 의한 초고속 한국어 형태소 분석)

  • 심광섭;양재형
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.89-99
    • /
    • 2004
  • This paper proposes a morphological analysis method that enables morphological analysis by checking conditions between two adjacent morphemes. These conditions are fed from a dictionary. This method eliminates a code conversion module and the application of transformational rules for candidate generation. The method claims that very high speed morphological analysis is attainable through simple bit operations for adjacency condition check. MACH, an implementation of the proposed method, is a supersonic Korean morphological analyzer which is able to analyze a document of 1 GB in 5 minutes on a PC with 1.13 GHz Pentium III CPU. The analysis accuracy of MACH is 99.2 %.