• Title/Summary/Keyword: 형태소분석

Search Result 631, Processing Time 0.024 seconds

A Pipeline Model for Korean Morphological Analysis and Part-of-Speech Tagging Using Sequence-to-Sequence and BERT-LSTM (Sequence-to-Sequence 와 BERT-LSTM을 활용한 한국어 형태소 분석 및 품사 태깅 파이프라인 모델)

  • Youn, Jun Young;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.414-417
    • /
    • 2020
  • 최근 한국어 형태소 분석 및 품사 태깅에 관한 연구는 주로 표층형에 대해 형태소 분리와 품사 태깅을 먼저하고, 추가 언어자원을 사용하여 후처리로 형태소 원형과 품사를 복원해왔다. 본 연구에서는 형태소 분석 및 품사 태깅을 두 단계로 나누어, Sequence-to-Sequence를 활용하여 형태소 원형 복원을 먼저 하고, 최근 자연어처리의 다양한 분야에서 우수한 성능을 보이는 BERT를 활용하여 형태소 분리 및 품사 태깅을 하였다. 본 논문에서는 두 단계를 파이프라인으로 연결하였고, 제안하는 형태소 분석 및 품사 태깅 파이프라인 모델은 음절 정확도가 98.39%, 형태소 정확도 98.27%, 어절 정확도 96.31%의 성능을 보였다.

  • PDF

A Transition based Joint Model for Korean POS Tagging & Dependency Parsing using Deep Learning (딥러닝을 이용한 전이 기반 한국어 품사 태깅 & 의존 파싱 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.97-102
    • /
    • 2017
  • 형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.

  • PDF

A Transition based Joint Model for Korean POS Tagging & Dependency Parsing using Deep Learning (딥러닝을 이용한 전이 기반 한국어 품사 태깅 & 의존 파싱 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.97-102
    • /
    • 2017
  • 형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.

  • PDF

Comparison of Calculation Methods for Probabilistic Korean Morpheme Recovery Model (한국어 형태소 복원 확률 모델의 계산 방법 비교)

  • Lee, Daniel;Kim, Bogyum;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.130-132
    • /
    • 2011
  • 형태소 복원은 형태소 분석의 한 단계로 문장에 나타난 형태소의 변형 현상을 분석하여 규칙화하고 이를 이용하여 형태소 원형을 복원하는 것이다. 본 논문에서는 형태소 품사 부착 말뭉치로부터 다양한 형태소 변화 규칙을 학습하여 효과적으로 형태소 원형을 복원하기 위한 계산 방법을 비교한다. 이를 위해 계산 모델, 한글 코드, 학습 자료를 다르게 하여 학습하고 그에 따른 성능을 비교 분석한다.

  • PDF

Korean morphological analysis and phrase structure parsing using multi-task sequence-to-sequence learning (Multi-task sequence-to-sequence learning을 이용한 한국어 형태소 분석과 구구조 구문 분석)

  • Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.103-107
    • /
    • 2017
  • 한국어 형태소 분석 및 구구조 구문 분석은 한국어 자연어처리에서 난이도가 높은 작업들로서 최근에는 해당 문제들을 출력열 생성 문제로 바꾸어 sequence-to-sequence 모델을 이용한 end-to-end 방식의 접근법들이 연구되었다. 한국어 형태소 분석 및 구구조 구문 분석을 출력열 생성 문제로 바꿀 시 해당 출력 결과는 하나의 열로서 합쳐질 수가 있다. 본 논문에서는 sequence-to-sequence 모델을 이용하여 한국어 형태소 분석 및 구구조 구문 분석을 동시에 처리하는 모델을 제안한다. 실험 결과 한국어 형태소 분석과 구구조 구문 분석을 동시에 처리할 시 형태소 분석이 구구조 구문 분석에 영향을 주는 것을 확인 하였으며, 구구조 구문 분석 또한 형태소 분석에 영향을 주어 서로 영향을 줄 수 있음을 확인하였다.

  • PDF

Korean morphological analysis and phrase structure parsing using multi-task sequence-to-sequence learning (Multi-task sequence-to-sequence learning을 이용한 한국어 형태소 분석과 구구조 구문 분석)

  • Hwang, Hyunsun;Lee, Changki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.103-107
    • /
    • 2017
  • 한국어 형태소 분석 및 구구조 구문 분석은 한국어 자연어처리에서 난이도가 높은 작업들로서 최근에는 해당 문제들을 출력열 생성 문제로 바꾸어 sequence-to-sequence 모델을 이용한 end-to-end 방식의 접근법들이 연구되었다. 한국어 형태소 분석 및 구구조 구문 분석을 출력열 생성 문제로 바꿀 시 해당 출력 결과는 하나의 열로서 합쳐질 수가 있다. 본 논문에서는 sequence-to-sequence 모델을 이용하여 한국어 형태소 분석 및 구구조 구문 분석을 동시에 처리하는 모델을 제안한다. 실험 결과 한국어 형태소 분석과 구구조 구문 분석을 동시에 처리할 시 형태소 분석이 구구조 구문 분석에 영향을 주는 것을 확인 하였으며, 구구조 구문 분석 또한 형태소 분석에 영향을 주어 서로 영향을 줄 수 있음을 확인하였다.

  • PDF

Morpheme Segmentation and Part-Of-Speech Tagging Using Restricted Resources (제한된 자원을 사용한 한국어 형태소 분석)

  • Kang, Sangwoo;Yang, Jaechul;Kim, Harksoo;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.212-214
    • /
    • 2012
  • 한국어 형태소 분석 및 품사 부착에 대한 연구는 지속적으로 이루어져 왔으며 규칙 기반 방법, 통계 기반 방법 등을 중심으로 연구되었다. 본 논문에서는 최근 활용도가 높아지고 있는 모바일 기기에 적합한 한국어 형태소 분석 및 품사 부착 방법을 제안한다. 모바일 기기는 계산 처리 능력과 사용 가능한 메모리가 제한되기 때문에 전통적인 방법을 사용하여 형태소 분석 및 품사 부착을 수행하기에는 한계가 있다. 본 논문에서는 기존의 규칙 기반 형태소 분석 방법인 좌최장일치법을 변형하여 형태소 분석을 수행 하고, 통계적인 방법인 hidden Markov model 을 축소하여 형태소 품사 부착을 수행한다. 제안하는 방법은 기존의 hidden Markov model을 사용한 시스템과 유사한 성능을 보여주며 모바일 기기에 적합하도록 소량의 메모리 사용과 월등히 빠른 속도로 형태소 분석 및 품사 부칙을 수행할 수 있다.

  • PDF

BERT with subword units for Korean Morphological Analysis (BERT에 기반한 Subword 단위 한국어 형태소 분석)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.37-40
    • /
    • 2019
  • 한국어 형태소 분석은 입력된 문장 내의 어절들을 지니는 최소의 단위인 형태소로 분리하고 품사 부착하는 작업을 의미한다. 기존 한국어 형태소 분석 방법은 음절 기반 연구가 주를 이루고 이를 순차 태깅 문제로 보고 SVM, CRF혹은 Bi-LSTM-CRF 등을 이용하거나 특정 음절에서 형태소의 경계를 결정하는 전이 기반 모델을 통해 분석하는 모델 등이 연구되었다. 최근 자연어 처리 연구에서 대용량 코퍼스로부터 문맥을 고려한 BERT 등의 언어 모델을 활용한 연구가 각광받고 있다. 본 논문에서는 음절 단위가 아닌 BERT를 이용한 Sub-word 기반 형태소 분석 방법을 제안하고 기분석 사전을 통해 분석하는 과정을 거쳐 세종 한국어 형태소 분석 데이터 셋에서 형태소 단위 F1 : 95.22%, 어절 정확도 : 93.90%의 성능을 얻었다.

  • PDF

The Design of morphological analyzer using a sentence-patterns (문장패턴을 활용한 형태소 분석기의 설계)

  • Hong, Sung-woong;Yon, Che-Yong;Park, Chan-Khon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.681-684
    • /
    • 2004
  • 본 논문에서는 한국어의 문장패턴을 활용한 형태소 분석기를 설계하였다. 어절기반의 형태소 분석기들이 갖는 형태소 분석 정보는 어절의 품사 등의 기초적 정보만을 포함한다. 본 논문에서 제안하는 문장패턴을 활용한 형태소 분석기는 문장단위의 형태소 분석을 제안하였고 형태소 분석단계에서 구문분석과 문장패턴이 갖는 의미정보를 포함함으로서 분석결과의 활용도를 높이도록 하였다. 제안된 형태소 분석기의 결과를 활용하여 질의 응답시스템, 정보 검색 등의 분야에서 구문분석, 의미분석의 단계를 최소화 하여 결과를 얻을 수 있을 것으로 기대한다.

  • PDF

Language Model Smoothing for Korean Morpheme Recovery (한국어 형태소 복원을 위한 언어모델의 평탄화(smoothing))

  • Lee, Daniel;Kim, Bo-Gyum;Lee, Jae-Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.309-311
    • /
    • 2012
  • 형태소 복원은 형태소 분석의 한 단계로 문장에 나타난 형태소의 변형 현상을 분석하여 규칙화하고 이를 이용하여 형태소 원형을 복원하는 것이다. 본 논문에서는 형태소 품사 부착 말뭉치로부터 다양한 형태소 변화 규칙을 학습하여 효과적으로 형태소 원형을 복원하기 위한 계산 방법을 비교한다. 이를 위해 계산 모델, 한글 코드, 학습 자료를 다르게 하여 학습하고 그에 따른 성능을 비교 분석한다.