• 제목/요약/키워드: 형상특징

Search Result 760, Processing Time 0.024 seconds

장려상 임영주, 한은선_ 서울산업대-대공간구조

  • Korean Structural Engineers Association
    • 건축구조
    • /
    • v.13 no.3
    • /
    • pp.106-107
    • /
    • 2006
  • 달걀낙하시험시 사용되었던 안정한 형태에서 아이디어를 얻어 구조물의 형상을 결정하게 되었다. 사이트의 가장 큰 특징인 수변공간을 유지하는 동시에 활용하는 방안으로 띄운 구조를 적용하였다. 리조트 시설인 공간의 특성에 따라 대공간구조를 사용하여 긴 스팬을 최대한 이용하는 반면 지반에 전달되는 연직하중을 최소한으로 하고자 하였다. 이 구조물은 서울이라는 거대한 도심의 중심에 위치하는 휴식공간인 동시에 랜드마크가 될 것이다.

  • PDF

A Study on Gesture Recognition Using Principal Factor Analysis (주 인자 분석을 이용한 제스처 인식에 관한 연구)

  • Lee, Yong-Jae;Lee, Chil-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.981-996
    • /
    • 2007
  • In this paper, we describe a method that can recognize gestures by obtaining motion features information with principal factor analysis from sequential gesture images. In the algorithm, firstly, a two dimensional silhouette region including human gesture is segmented and then geometric features are extracted from it. Here, global features information which is selected as some meaningful key feature effectively expressing gestures with principal factor analysis is used. Obtained motion history information representing time variation of gestures from extracted feature construct one gesture subspace. Finally, projected model feature value into the gesture space is transformed as specific state symbols by grouping algorithm to be use as input symbols of HMM and input gesture is recognized as one of the model gesture with high probability. Proposed method has achieved higher recognition rate than others using only shape information of human body as in an appearance-based method or extracting features intuitively from complicated gestures, because this algorithm constructs gesture models with feature factors that have high contribution rate using principal factor analysis.

  • PDF

Evaluation of shape similarity for 3D models (3차원 모델을 위한 형상 유사성 평가)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Evaluation of shape similarity for 3D models is essential in many areas - medicine, mechanical engineering, molecular biology, etc. Moreover, as 3D models are commonly used on the Web, many researches have been made on the classification and retrieval of 3D models. In this paper, we describe methods for 3D shape representation and major concepts of similarity evaluation, and analyze the key features of recent researches for shape comparison after classifying them into four categories including multi-resolution, topology, 2D image, and statistics based methods. In addition, we evaluated the performance of the reviewed methods by the selected criteria such as uniqueness, robustness, invariance, multi-resolution, efficiency, and comparison scope. Multi-resolution based methods have resulted in decreased computation time for comparison and increased preprocessing time. The methods using geometric and topological information were able to compare more various types of models and were robust to partial shape comparison. 2D image based methods incurred overheads in time and space complexity. Statistics based methods allowed for shape comparison without pose-normalization and showed robustness against affine transformations and noise.

A Study on the Reliability Attributes of the Software Reliability Model Following the Shape Parameter of Minimax Life Distribution (미니맥스 수명분포의 형상모수를 따르는 소프트웨어 신뢰모형에 관한 신뢰속성에 관한 연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.325-330
    • /
    • 2018
  • This paper, following the shape parameters of the minimax distribution, describes the special form of the beta distribution, the Minimax distribution, as a function of the shape parameters for the software reliability model based on the non-homogeneous Poisson process. Characteristics and usefulness were discussed. As a result, the case of the shape parameter 1 of Minimax distribution than less than and greate in mean squared error is the smallest, in determination coefficient, appears to be high, the shape parameter 1 of Minimax distribution regard as an efficient model. The estimated determination coefficient of the proposed model is estimated to be more than 95%, which is a useful model in the field of software reliability. Through this study, software design and users can identify the software failure characteristics using mean square error, decision coefficient, and confidence interval can be used as a basic guideline.

The chemical composition and shape of inclusion of amethyst (자수정 내포물의 형상과 화학조성에 관한 연구)

  • Yoon, Si-Nae;Song, Young-Jun;Yon, Seog-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.207-215
    • /
    • 2010
  • This study was carried out for the purpose of obtaining the basic data for identifying the origin of amethyst. For this, the three dimensional shapes of inclusions contained in various amethyst were observed with Stereo Zoom microscope. The shape and chemical composition of cross section of solid inclusion and the chemical composition of evaporite were investigated by SEM-EDS. The evaporite is made from evaporating of liquid inclusion which is flowed out of amethyst sample by decompressing. Lastly, The trace mineral composition of amethyst was investigated by ICP-AES after digesting the amethyst sample with HF-$H_2SO_4$ solution.

Feature Detection using Measured 3D Data and Image Data (3차원 측정 데이터와 영상 데이터를 이용한 특징 형상 검출)

  • Kim, Hansol;Jung, Keonhwa;Chang, Minho;Kim, Junho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.601-606
    • /
    • 2013
  • 3D scanning is a technique to measure the 3D shape information of the object. Shape information obtained by 3D scanning is expressed either as point cloud or as polygon mesh type data that can be widely used in various areas such as reverse engineering and quality inspection. 3D scanning should be performed as accurate as possible since the scanned data is highly required to detect the features on an object in order to scan the shape of the object more precisely. In this study, we propose the method on finding the location of feature more accurately, based on the extended Biplane SNAKE with global optimization. In each iteration, we project the feature lines obtained by the extended Biplane SNAKE into each image plane and move the feature lines to the features on each image. We have applied this approach to real models to verify the proposed optimization algorithm.

Feature Recognition for Digitizing Path Generation in Reverse Engineering (역공학에서 측정경로생성을 위한 특징형상 인식)

  • Kim Seung Hyun;Kim Jae Hyun;Park Jung Whan;Ko Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.100-108
    • /
    • 2004
  • In reverse engineering, data acquisition methodology can generally be categorized into contacting and non-contacting types. Recently, researches on hybrid or sensor fusion of the two types have been increasing. In addition, efficient construction of a geometric model from the measurement data is required, where considerable amount of user interaction to classify and localize regions of interest is inevitable. Our research focuses on the classification of each bounded region into a pre-defined feature shape fer a hybrid measuring scheme, where the overall procedures are described as fellows. Firstly, the physical model is digitized by a non-contacting laser scanner which rapidly provides cloud-of-points data. Secondly, the overall digitized data are approximated to a z-map model. Each bounding curve of a region of interest (featured area) can be 1.aced out based on our previous research. Then each confined area is systematically classified into one of the pre-defined feature types such as floor, wall, strip or volume, followed by a more accurate measuring step via a contacting probe. Assigned to each feature is a specific digitizing path topology which may reflect its own geometric character. The research can play an important role in minimizing user interaction at the stage of digitizing path planning.

Simplification of a Feature-based 3D CAD Assembly Model Considering the Allowable Highest and Lowest Limits of the LOD (허용 가능한 LOD의 상하한을 고려한 특징형상 3D CAD 조립체 모델의 단순화)

  • Yu, Eun-seop;Lee, Hyunoh;Kwon, Soonjo;Lee, Jeong-youl;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.22-34
    • /
    • 2020
  • Three-dimensional (3D) computer-aided design (CAD) models require different levels of detail (LODs) depending on their purpose. Therefore, it is beneficial to automatically simplify 3D CAD assembly models to meet the desired LOD. Feature-based 3D CAD assembly models typically have the lowest and highest feasible limits of LOD during simplification. In order to help users obtain a feasible simplification result, we propose a method to simplify feature-based 3D CAD assembly models by determining the lowest and highest limits of LOD. The proposed method is verified through experiments using a simplification prototype implemented as a plug-in type module on Siemens NX.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.