• Title/Summary/Keyword: 형상추정

Search Result 675, Processing Time 0.028 seconds

AFM Study on Surface Film Formation on a Graphite Negative Electrode in a $LiPF_6$-based Non-Aqueous Solution (AFM을 이용한 $LiPF_6$를 주성분으로 하는 비수용액중에서의 흑연 음극 표면에 형성되는 피막에 관한 연구)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1313-1318
    • /
    • 2006
  • The mechanism fur the surface film formation was studied by in situ Atomic Force Microscopy (AFM) observation of a highly oriented pyrolytic graphite (HOPG) basal plane surface during cyclic voltammetry at a slow scan-rate of 0.5 mV $s^{-1}$ in 1 moi $dm^{-3}$ (M) $LiPF_6$ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Decomposition of the electrolyte solution began at a potential around 2.15 V vs. $Li^+$/Li on step edges. In the potential range 0.95-0.8 V vs. $Li^+$/Li, flat areas (hill-like structures) and large swelling appeared on the surface. It is considered that these two features were formed by the intercalation of solvated lithium ions and their decomposition beneath the surface, respectively. At potentials more negative than 0.80 V vs. $Li^+$/Li, particle-like precipitates appeared on the basal plane surface. After the first cycle, the thickness of the precipitate layer was 30 nm. The precipitates were considered to be decomposition of the lithium salt ($LiPF_6$) and solvent molecules (EC and DEC), and to have an important role in suppressing further solvent decomposition on the basal plane.

  • PDF

Analysis of Elastic Constants in SiC Particulate Reinforced Al Matrix Composites by Resonant Ultrasound Spectroscopy (초음파 공명 분광법(RUS)을 이용한 SiC 입자강화 Al 기지복합재료의 탄성계수 해석)

  • Jung, Hyun-Kyu;Cheong, Yong-Moo;Joo, Young-Sang;Hong, Soon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.180-188
    • /
    • 1999
  • The dynamic elastic properties of metal matrix composites were investigated by resonant ultrasound spectroscopy(RUS). The composites used in this study consisted of 2124 aluminum alloy reinforced with different concentrations of SiC particles. RUS can determine the nine independent elastic stiffness($C_{ij}$) for the orthorhombic symmetry on a small specimen simultaneously. The elastic constants were determined as a function of the volume fraction. A concept of effective aspect ratio. which combine the aspect ratio and the orientation of reinforcement. was used to calculate the initial moduli from Mori-Tanaka theory for the input of RUS minimization code. Young's moduli can be obtained from the measured stiffnesses. The results show that the elastic stiffness increases with increment of the particle content. The behavior of elastic stiffness indicates that the particle redistribution induced by the extrusion process enlarges the transversely isotropic symmetry as the fraction of reinforced particles increase. This relationship could be used for determination of the volume fractions of reinforcement as a potential tool of nondestructive material characterization.

  • PDF

Numerical Analysis of Gas Leakage and Diffusion Behavior in Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내에서의 가스 누출 및 확산 거동에 관한 수치해석 연구)

  • Bang, Joo Won;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.118-124
    • /
    • 2017
  • In this study, a numerical simulation was performed using commercial code Fluent(v.17.1). The underground Combined Cycle Power Plant (CCPP) was simplified to analyze the methane gas leakage with the crack size and position. In addition, extensive numerical simulations were carried out for different crack sizes from 10 mm to 20 mm. The crack position is the gas leakage, which is assumed to be near the pipe elbow and the gas turbine. A total of 4 cases were compared and analyzed. To analyze the gas leakage, the concept of the Lower Flammable Limit (LFL) was applied. The leakage distance was defined in the longitudinal direction, and the transverse direction was estimated and quantitatively analyzed. As a result, the leakage distance in the longitudinal direction varies by 52.3 % depending on the crack size at the same crack position. Moreover, the maximum difference was 34.8 % according to the crack position when the crack sizes are identical. As jet flow impacts on the obstacle and changes its direction, the recirculation flows are formed. These results are expected to provide useful data to optimize the location and number of gas detections in confined spaces, such as underground CCPP.

A study on the bedrock erosional forms at Dutayeon, Yanggu (양구 두타연 인근 지역의 기반암 하상지형 연구)

  • KIM, Jong Yeon;KIM, Chang Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.31-49
    • /
    • 2012
  • Satae cheon, a tributary of the Suip cheon in Yanggu, Gangwon province, is an international river extended to North Korea. Most of drainage basin area of the river was the fierce battle field during the Korean War(1950-1953) and hard to access as it located between the MDL(Military Demarcation Line) and the CCZ(Civilian Control Zone: about 10km south from MDL). By the restriction of access to the sites, most of natural landscape have been well conserved except limited use for military activities. Even the landfoms in that area were not studied, except the government's heritage reports. Satae Cheon's channel follows the Imdang fault line(N-S) to Satae-ri and flow to west to the Dutayeon area. The river meanders along geological structure or weak line at the Dutayeon area. The meandering channel was shorten by the meander cut which linked the thalweg line of meander loop ant the meander neck. As a result of this cut, the river cliff formed by the Satae cheon became the part of newly formed channel bed and the S-forms are formed. After the channel route stabilized, channel incised the rock with large potholes and undulating walls were formed. The channel width changes from 1m to 10m with restriction of the undulating walls, so this part can be regarded as inner channel or inner gorge. From the point of planar forms it also can be slot-type canyon.

A Study on the Phase Change and Microstructure Change According to the Sintering Temperature of Cement Clinker Applied with Coal Ash (석탄재를 적용한 시멘트 클링커의 소성온도에 따른 상변화 및 미세구조 변화 고찰)

  • Yoo, Dong-Woo;Im, Young-Jin;Choi, Sang-Min;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.553-560
    • /
    • 2021
  • In this study, cement clinker using a pure sample and clinker using 7% coal ash were sintered at a temperature of 1050~1500℃. Changes in the content of cement minerals and changes in microstructure by sintering temperature were reviewed. The application of coal ash as a raw material for cement clinker was applicable as a source of Al2O3 and SiO2. At a sintering temperature of 1350℃ or higher, the cement clinker applied with coal ash showed the same level of mineral content as compared to the cement clinker applied with pure raw material. The microstructure also showed a similar state, confirming that coal ash can be used as a raw material for cement. In XRD-Reitveld analysis, a maximum amount of Belite was produced at 1250℃. The conversion from Belite to Alite was observed from 1350℃. From 1350℃, the interstitial phase and the mineral phase presumed to be alite were distinguished. It was clearly distinguished from 1400℃. As the sintering temperature increased, the shape and boundary of the crystal phase became clear, and the size of the crystal phase was also increased.

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

Waveform characteristics of ultrasonic wave generated from CNT/PDMS composite (CNT/PDMS 복합체로부터 방사된 초음파의 파형 특성)

  • Kim, Gisuk;Kim, Moojoon;Ha, Kanglyeol;Lee, Jooho;Paeng, Dong-Guk;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.459-466
    • /
    • 2019
  • When a laser pulse is irradiated on a CNT (Carbon Nanotube) and PDMS (Poly dimethylsiloxane) composite coated on a transparent PMMA (Poly methyl methacrylate) substrate, a strong ultrasonic wave is generated due to the thermoelastic effect. In this paper, the thermoacoustic theory related to the wave generation by the CNT/PDMS composite was established. The waveforms of ultrasonic waves when a laser pulse having a Gaussian waveform is irradiated on the composite with a thickness of $20{\mu}m$ were numerically simulated. From the results, it was confirmed that ultrasonic shock waves can be generated from the CNT/PDMS composite and the waveforms are changed little even if the physical properties of the composite are changed by ${\pm}20%$. It was found that the peak positive and negative pressures increase as the thermal expansion coefficient increases, or as density, heat capacity and sound speed decreased. However, those changes were not so sensitive with thermal conductivity. In addition, the physical properties of the CNT/PDMS composite fabricated in this study were estimated from the comparison of the measurement and simulation results.

Design and Fabrication of Binary Diffractive Optical Elements for the Creation of Pseudorandom Dot Arrays of Uniform Brightness (균일 밝기 랜덤 도트 어레이 생성을 위한 이진 회절광학소자 설계 및 제작)

  • Lee, Soo Yeon;Lee, Jun Ho;Kim, Young-Gwang;Rhee, Hyug-Gyo;Lee, Munseob
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • In this paper, we report the design and fabrication of binary diffractive optical elements (DOEs) for random-dot-pattern projection for Schlieren imaging. We selected the binary phase level and a pitch of 10 ㎛ for the DOE, based on cost effectiveness and ease of manufacture. We designed the binary DOE using an iterative Fourier-transform algorithm with binary phase optimization. During initial optimization, we applied a computer-generated pseudorandom dot pattern of uniform intensity as a target pattern, and found significant intensity nonuniformity across the field. Based on the evaluation of the initial optimization, we weighted the target random dot pattern with Gaussian profiles to improve the intensity uniformity, resulting in the improvement of uniformity from 52.7% to 90.8%. We verified the design performance by fabricating the designed binary DOE and a beam projector, to which the same was applied. The verification confirmed that the projector produced over 10,000 random dot patterns over 430 mm × 430 mm at a distance of 5 meters, as designed, but had a slightly less uniformity of 84.5%. The fabrication errors of the DOE, mainly edge blurring and spacing errors, were strong possibilities for the difference.

Research on The Crash Location and Speed Distribution of Low Altitude Fixed-Wing Aircraft (저고도 운용 고정익 항공기의 고장 시 추락지점 및 속도 분포 연구)

  • Nam, Hong-Su;Park, Bae-Seon;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • In order to solve the problem of urban traffic congestion, Urban Air Mobility (UAM) concept using Electric Vertical Take-off and Landing (eVTOL) aircraft has been gaining popularity, and many domestic and international studies are underway. However, since these aircraft inevitably fly over densely populated areas, it is essential to ensure safety, which starts with accurately analyzing the crash risk. In this paper, the locations and impact speeds of crash are computed using six degree-of-freedom simulations of an eVTOL aircraft in a fixed-wing mode. System malfunction was modeled by a sudden loss of thrust with control surfaces being stuck during cruise. Because most of these eVTOL aircraft are still under development, a methodology of constructing a six degree-of-freedom dynamics model from generic specification is also developed. The results show that the crash locations are highly concentrated right under the aircraft within a square that has an edge length similar to the cruise altitude. Speed distribution is more complicated because almost identical crash locations can be achieved by two very different paths resulting in a large variation in the speeds.

Image Data Loss Minimized Geometric Correction for Asymmetric Distortion Fish-eye Lens (비대칭 왜곡 어안렌즈를 위한 영상 손실 최소화 왜곡 보정 기법)

  • Cho, Young-Ju;Kim, Sung-Hee;Park, Ji-Young;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Due to the fact that fisheye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Not only use the camera as a viewing system, but also as a camera sensor, camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. In this thesis, we introduce a geometric correction technique to minimize the loss of the image data from a vehicle fish-eye lens having a field of view over $180^{\circ}$, and a asymmetric distortion. Geometric correction is a process in which a camera model with a distortion model is established, and then a corrected view is generated after camera parameters are calculated through a calibration process. First, the FOV model to imitate a asymmetric distortion configuration is used as the distortion model. Then, we need to unify the axis ratio because a horizontal view of the vehicle fish-eye lens is asymmetrically wide for the driver, and estimate the parameters by applying a non-linear optimization algorithm. Finally, we create a corrected view by a backward mapping, and provide a function to optimize the ratio for the horizontal and vertical axes. This minimizes image data loss and improves the visual perception when the input image is undistorted through a perspective projection.