• Title/Summary/Keyword: 형단조

Search Result 168, Processing Time 0.025 seconds

Rate-Monotonic Scheduler with Extended Schedulability Inspection for Hard Real-Time Tesk (경성 실시간 태스크를 위한 확장된 스케줄 가능성 검사를 갖는 비율단조 스케줄러)

  • 신동헌;조수현;김영학;김태형
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.2
    • /
    • pp.50-60
    • /
    • 2004
  • Recently, most of the embedded system is required not only many functions but also real-time characteristics in purpose. In the hard real-time system, especially, strict deadline of periodic task can affect the performance of the system. In this paper, we design and implement the scheduler based on RM(Rate-Monotonic) rule. This scheduler makes feasible patterns based on EDF(Earliest deadline first) rule with extended schedulability inspection before execution, for periodic task-set that has high CPU utilization and then, execute periodic task-set depended on feasible patterns. The feasible pattern formed into EDF rule is capable of the efficiency of CPU up to 100 percentage and by the referenced execution of the feasible pattern is possible of removing the red-time scheduling overhead that is the defect of the order of dynamic assignment rule.

  • PDF

Evaluation of Uncertainty Importance Measure for Monotonic Function (단조함수에 대한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.179-185
    • /
    • 2010
  • In a sensitivity analysis, an uncertainty importance measure is often used to assess how much uncertainty of an output is attributable to the uncertainty of an input, and thus, to identify those inputs whose uncertainties need to be reduced to effectively reduce the uncertainty of output. A function is called monotonic if the output is either increasing or decreasing with respect to any of the inputs. In this paper, for a monotonic function, we propose a method for evaluating the measure which assesses the expected percentage reduction in the variance of output due to ascertaining the value of input. The proposed method can be applied to the case that the output is expressed as linear and nonlinear monotonic functions of inputs, and that the input follows symmetric and asymmetric distributions. In addition, the proposed method provides a stable uncertainty importance of each input by discretizing the distribution of input to the discrete distribution. However, the proposed method is computationally demanding since it is based on Monte Carlo simulation.

Development of Die Design System for Turbine Blade Forging (터빈 블레이드의 형단조 금형설계 시스템 개발)

  • 조종래
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.77-81
    • /
    • 1999
  • The predictions of metal flow forging load optimal die angle and preform size are not so easy in turbine blade forging. First of all the quality of final product is influenced by side force which is one of the significant factors. in this study slab method is applied to determine optimal die angle minimizing side force and the position of preform Finally drawing of die design is obtained in optimal die angle with developing tool that is composed of Visual Basic.

  • PDF

Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft (일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측)

  • Lee, Ho-Jin;Guk, Dae-Sun;Ahn, Dong-Gyu;Jung, Jong-Hoon;Seol, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

Finite Element Analysis for Improvement of Folding Defects in the Forging Process of Subminiature Screws (초소형 나사 단조시 접힘결함 향상을 위한 유한요소해석)

  • Lee, Ji Eun;Kim, Jong Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 2015
  • Recent trends to reduce the size of mobile electronics products have driven miniaturization of various components, including screw parts for assembling components. Considering that the size reduction of screws may degenerate their joining capabilities, the size reduction should not be limited to the thread region but should be extended to its head region. The screw head is usually manufactured by forging in which a profiled punch presses a billet so that plastic deformation occurs to form the desired shape. In this study, finite element (FE) analysis was performed to simulate the forging process of a subminiature screw; a screw head of 1.7 mm diameter is formed out of a 0.82 mm diameter billet. The FE analysis result indicates that this severe forging condition leads to a generation of folding defects. FE analyses were further performed to find appropriate punch design parameters that minimize the amount of folding defects.

Design of a Multi-Step Warm Heading Process for Subminiature Screws (초소형 스크류 온간 다단 헤딩공정 연구)

  • Jang, Yeon Hui;Jeong, Jin Hwan;Jang, Myung Guen;Hong, Jae-Keun;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.

리브/웨브 형태를 갖는 축대칭 부품의 블로커설계 자동화에 관한 연구

  • 최재찬;김병민;김성원;김호관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.63-67
    • /
    • 1992
  • 본 논문은 프레스나 해머로 생산되는 리브/웨브 형태를 갖는 축대칭 부품에 대한 블로커설계 자동화시스템의 개발에 관하여 설명한 다. 플레시를 갖는 밀폐형단조 공정에서 블로커 형상의 설계는 매우 중요하다. 일반적으로 단조공정에서 부품의 형상은 대부분 3차 원 형상이다. 그러나 복잡한 3차원 형상의 부품을 그대로 고려하여 설계한다는 것은 어려움이 많고 실용적이지도 못하다. 따라서 블로커를 설계할 때 부품을 단면으로 도려함으로서 설계작업을 단순화시킬 수 있다. 본 논문에서는 축대칭 형태의 부품만을 고려하였다. 한 부품단면은 리브나 웨브와 같은 부분단면들로 분할할 수 있으며, 이 부분단면들에 대하여 설계규칙과 데이타베이스를 적용함으로서 블로커형상을 설계할 수 있다. 부품단면의 형상을 분할하여 시스템 내에 인식시키기 위하여 단면을 도면요소표현, 좌표 및 반경표현 그리고 속성표현으로 나타냈으며 여기에 단면의 도면요소표현은 부품의 체적, 단면적, 원주길이 및 반단면의 질량중심을 계산하는데 쉽게 이용될 수 있다. 그리고 좌표 및 반경표현은 경사각, 코너반경과 필렛반경을 수정하는데 그리고 속성표현은 리브와 웨브의 형태와 특성을 고려하여 블로커를 설계하는데 이용될 수 있다.

A study on rib-web shaped ring forging using UBET (UBET를 이용한 리브-웨브형 링 단조에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Nam, K.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.134-142
    • /
    • 1994
  • An upper bound elemental technique (UBET) is applied to predict variations of neutral plane and optimal position of the initial billet for rib-wep shaped ring forging. In the analysis, the neutral plane position and velocity fields are determined by minimizing the total power consump- tion with respect to chosen parameters. The degree of die-cavity filling by initial billet-position and the variations of neutral plane by friction condition are investigated. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF