최근 웹 2.0의 영향으로 태깅을 지원하는 인터넷 서비스들이 많아졌다. 태깅의 원래 목적은 컨텐츠를 분류하고 재검색을 용이하게 하는 것이지만, 컨텐츠에 태깅되어 있는 태그들을 분석하여 컨텐츠의 특성을 파악할 수 있다. 본 논문에서는 내용 파악이 힘든 컨텐츠들이 증가함에 따라 이러한 컨텐츠들의 효과적인 추천을 위해, 여러 사용자들에 의해 협업적으로 태깅된 정보를 이용한 여과 기법을 제시한다. 제안하는 방법은 사용자가 태깅한 정보들을 바탕으로 사용자의 관심을 파악하는 부분과 파악된 관심에 맞는 컨텐츠를 선별하는 부분으로 나뉘어진다. 사용자의 관심을 파악하는 부분은 사용자가 태깅한 정보들을 협업적 여과를 이용하고, 컨텐츠 선별은 확률적인 방법인 나이브 베이지안 분류자를 이용한다. 이를 통해 협업적 여과 방법의 문제점인 희박성 문제(sparsity problem)와 초기 사용자 문제(cold-start user probleam) 대해 기존의 방법들과 비교하여 그 효과를 보인다.
본 연구는 국내 문화유산기관에서 디지털 콘텐츠의 효과적인 접근과 활용을 도모하고 이용자 참여를 활성화할 수 있는 소셜 태깅의 활용방안을 제안하는 것을 목적으로 한다. 이를 위해 정보기술을 활용한 아카이브의 성과를 바탕으로 국내외 아카이브의 기술 적용 현황을 파악하고, 소셜 태깅이 적용된 국내외 디지털 아카이브의 사례연구를 통해 소셜 태킹의 활용 현황과 특성을 분석하였다. 이용자 참여 단계유형을 재구성하여 소셜 태깅을 통한 참여 단계 모델을 제시하고, 디지털 아카이브에서 이용자의 참여와 콘텐츠의 기여도를 중심으로 표현, 커뮤니케이션, 협업에 따른 소셜 태깅의 활용 방안을 제안하였다.
최근 들어 웹의 진화가 급속하게 진전되면서 사용자가 직접 참여하는 유형의 서비스들이 활발하게 보급되었다. 사용자들은 네트워크 공간상에서 여러 종류의 콘텐츠를 공유하며 의견을 교환한다. 이러한 서비스의 대표적인 예로 소셜 북마킹 사이트를 들 수 있다. 사이트의 이용자들은 웹 사이트를 북마킹하는 과정에 있어서 타인의 북마킹 내역 및 태그 정보를 공유하며태그를 생산하게 되는데 이를 협업적 태깅이라고 한다. 본 연구에서는 최근 활발하게 이용되는 소셜 북마킹 및 협업적 태깅에 대한 실증적인 분석을 수행하였다. 분석 결과 분석 결과 전체 이용자 중에서 아주 소수만이 북마킹 활동을 활발하게 수행하며, 소수의 사이트와 태그가 다수의 사용자에 의해 이용되었다. 24%의 사용자가 총 80%에 해당하는 태깅을 수행하였으며, 75%의 사이트와 81%의 태그가 3번 이하로 태깅되었다. 사용자에 따라서 북마킹 활동에도 차이가 있었으며, 가장 이른 시점에 부여된 태그가 다수의 동의를 얻었다. 특정 사이트의 태그 구성 비율은 점차 수렴해감을 확인할 수 있었다. 본 연구결과가 향후 소셜 북마킹 시스템의 발전에 도움이 시사점을 제공한다고 기대한다.
최근 웹 2.0의 도래와 더불어 멀티미디어 콘텐츠 제작 과정에서 사용자의 참여를 장려하기 시작했다. 이에 따라서 멀티미디어 콘텐츠 관련 연구들은 사용자 참여형 환경에 맞추어 맞춤형정보를 제공하는데 연구의 초점을 맞추기 시작했다. 이에 본 연구는 사용자의 요구사항과 개인별 맞춤정보를 제공하기 위한 방법론을 정리하고 분석함으로써 적용 방안을 사용자가 적극적으로 웹 콘텐츠 제작 과정에 참여하여 해당 콘텐츠의 카테고리 및 정의를 설정할 수 있는 환경을 마련하여 사용자의 선택의 폭을 확장하며, 콘텐츠 제작에 참여할 수 있는 환경을 마련해줄 수 있을 것으로 기대된다.
웹상에서의 기하급수적으로 증가하는 정보의 양으로 인해, 중요하고 가치 있는 데이터를 변별 해 내는 작업은 그 어느 때보다도 중요하다고 하겠다. 추천 시스템은 이러한 정보의 과 공급 문제를 해결하기 위한 가장 효과적인 방법 중 하나임에도 불구하고, 그 성능은 기존 방식들에서 크게 진전을 이루지 못하고 있는 것이 사실이다. 따라서 본 논문에서는 이 문제를 진전시키기 위해, 협업태그를 활용한 새로운 사용자 프로파일링 기법을 제안하고 사용자의 평가 및 태깅패턴을 분석, 그 활용 또한 모색한다. 본 논문에서 제안하는 기법의 검증을 위해, 해당 프로파일링 기법을 활용 한 혼합 영화 추천 시스템을 구현하고 실제 데이터를 사용하여 기존의 추천 방식 대비 그 경쟁력을 검증하였다. 그와 더불어, 민감도 분석을 통해 사용자의 태깅패턴과 평가패턴에 기반한 차별적인 추천 방식의 잠재적 가능성 또한 제안, 검증한다.
무수히 많은 정보가 쏟아져 나오는 시대에 살고 있는 웹 사용자에게 유용한 정보를 제공하기 위한 여과기법의 연구는 큰 중요성을 갖는다. 이런 기법엔 크게 내용 기반 여과방식과 협업적 여과방식 두 가지로 나눌 수 있다. 이들 각각은 서로 장, 단점을 가지고 있으며 따라서 이를 병합한 기법의 연구는 필수적이다. DB 의 WAL 기법과 진화알고리즘을 이용하여 좀 더 사용자에게 최적화된 추천을 가능하게 할 수 있다. 또한 폭소노미에 기반한 태깅기법 및 패턴인식, 온톨로지(ontology) 기법의 연구를 통해 기존의 한계를 보완하여 향후 더욱 개선된 여과 기법을 기대할 수 있다.
태깅은 웹 2.0의 핵심 기술 중 하나로, 매우 유연하고 역동적인 분류 체계를 제공한다. 하지만 유연성과 역동성의 확보에 의해 계층 구조나 연관 관계와 같은 태그의 관계성이 부족하거나 존재하지 않는 한계점을 가지고 있는 것 또한 사실이다. 이런 한계점을 보완하기 위한 방법으로 계층 관계를 형성하기 위한 계층 클러스터링 방법과, 연관 관계를 형성하기 위한 협업 필터링 방법이 존재한다. 이 두 가지 방법은 태그의 관계성을 제공하지만, 연관 관계와 계층 관계 중 하나만 제공한다는 단점을 가진다. 본 논문에서는 태그 검색 시 연관 관계뿐 아니라 계층 구조의 탐색을 제공해주기 위한 태그 클러스터링 알고리즘을 설계하였다. 제안한 알고리즘은 사용자 태그셋을 활용하여 태그의 유사성을 계산하는 방법을 제시하고, 기존의 시각화 방법(태그 구름)과 다른 새로운 형태로 시각화 할 수 있는 결과 데이터를 제공한다.
본 연구는 정보채집(information foraging) 이론을 적용하여 웹 정보자원을 조직, 검색, 공유하는 폭소노미 이용자의 상호작용을 체계적으로 연구, 분석하는 개념적 틀을 제시하고자 한다. 폭소노미 상호작용 이해를 위한 개념적 틀은 최종 이용자의 세 가지 정보행위간의 유기적인 관계로 구성되어 있다: (1) 태그를 활용하여 웹 정보자원을 분류하고 조직하는 태깅; (2) 폭소노미 내에서 유용한 정보 자원을 발견하고 검색하는 정보탐험; (3) 폭소노미를 통해 유사한 관심을 갖고 있는 다른 이용자를 발견하고 커뮤니티를 구성하며, 협업을 통해 새로운 정보자원을 창출해내는 지식공유. 이 틀에서 최종이용자는 정보환경에 유연적으로 적응하며 폭소노미를 통해 줄곧 관심사에 관한 정보를 수집, 모니터하며 다른 이용자와의 효율적인 공유와 검색을 위해 끊임없이 탐험하는 정보채집자(information forager)로 이해된다. 본 연구에서 제시한 개념적 틀은 이용자와 폭소노미의 역동적이고 복잡한 상호작용 현상을 포괄적으로 조망함으로써, 향후 폭소노미를 비롯한 웹 정보서비스의 유용화 연구 설계에 보다 체계적인 이론적 토대를 제공할 수 있을 것이다.
본 연구에서는 소셜 음악 사이트에서 사용자들이 음악 아이템을 청취한 횟수와 생성한 태그 정보를 혼합하여 음악을 추천하는 시스템을 제안한다. 현재, 상용화된 음악 추천 시스템들은 주로 사용자의 청취 습관과 외부적인 선호도 입력값을 기반으로 음악을 추천하고 있다. 그러나 이 방식은 아직 음악을 청취한 사용자가 많지 않은 새로운 음악이나 청취 정보가 없는 새로운 사용자의 경우 추천하는 데 어려움이 있다. 이 문제를 해결하기 위해서 본 논문에서는 사용자가 선정한 키워드를 아이템에 부여하는 협업 태깅으로 생성된 태그 정보를 활용하였다. 태그의 의미를 파악하여 감정 표현의 정도에 따라 가중치를 부여한 뒤, 태그 점수와 청취 횟수를 혼합하여 음악 아이템의 선호도를 산출하였다. 이를 기반으로 사용자 프로파일을 생성하고 협업 필터링 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 청취 습관 기반 추천, 태그 점수 기반 추천, 하이브리드 추천 방법의 세 가지 추천 방법에 대해서 정확도, 재현율, 그리고 F-measure를 계산하였다. 실험 결과에 대해 통계적 검증을 시행한 결과, 하이브리드 추천 방법이 다른 두 가지 방식보다 통계적으로 유의한 차이를 보여 성능이 우수한 것으로 나타났다.
최근 폭소노미라고 불리는 데이터들이 사용자의 의도 파악 및 흥미를 분석하는 데에 매우 유용하게 쓰이고 있다. 본 논문은 폭소노미 데이터를 이용한 개인화 검색에서, 기존의 벡터 기반 프로파일링 및 유사도 계산 모델의 한계점을 지적하고, 이러한 한계를 극복하기 위한 방법으로 그래프 기반의 프로파일링 및 유사도 계산법을 제안한다. 최종적으로 그래프 기반의 개인화 검색 모델에 추가적으로 질의어간의 근접성까지 고려한 보다 발전된 개인화 검색 기법을 제안하였다. 본 연구에서는 복수의 데이터셋을 사용한 객관적인 성능 평가 실험을 통해 제안한 모델이 기존의 벡터 스페이스 모델에 기반한 프로파일링 기법 및 프로파일 간의 유사도 계산 기법보다 더 뛰어난 개인화 검색 결과를 제공함을 확인하였다. 또한 추가적인 파라미터 실험을 통하여, 제안하는 모델은 어떠한 형태의 데이터셋에도 쉽게 적용가능함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.