• 제목/요약/키워드: 협업태깅

검색결과 11건 처리시간 0.024초

효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법 (Collaborative Tag-based Filtering for Recommender Systems)

  • 연철;지애띠;김흥남;조근식
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.157-177
    • /
    • 2008
  • 최근 웹 2.0의 영향으로 태깅을 지원하는 인터넷 서비스들이 많아졌다. 태깅의 원래 목적은 컨텐츠를 분류하고 재검색을 용이하게 하는 것이지만, 컨텐츠에 태깅되어 있는 태그들을 분석하여 컨텐츠의 특성을 파악할 수 있다. 본 논문에서는 내용 파악이 힘든 컨텐츠들이 증가함에 따라 이러한 컨텐츠들의 효과적인 추천을 위해, 여러 사용자들에 의해 협업적으로 태깅된 정보를 이용한 여과 기법을 제시한다. 제안하는 방법은 사용자가 태깅한 정보들을 바탕으로 사용자의 관심을 파악하는 부분과 파악된 관심에 맞는 컨텐츠를 선별하는 부분으로 나뉘어진다. 사용자의 관심을 파악하는 부분은 사용자가 태깅한 정보들을 협업적 여과를 이용하고, 컨텐츠 선별은 확률적인 방법인 나이브 베이지안 분류자를 이용한다. 이를 통해 협업적 여과 방법의 문제점인 희박성 문제(sparsity problem)와 초기 사용자 문제(cold-start user probleam) 대해 기존의 방법들과 비교하여 그 효과를 보인다.

  • PDF

디지털 아카이브의 이용자 참여의 활성화를 위한 소셜 태깅 활용 방안 연구 (A Study on Social Tagging for Promoting Users' Participation in Digital Archives)

  • 박희진
    • 정보관리학회지
    • /
    • 제34권3호
    • /
    • pp.269-290
    • /
    • 2017
  • 본 연구는 국내 문화유산기관에서 디지털 콘텐츠의 효과적인 접근과 활용을 도모하고 이용자 참여를 활성화할 수 있는 소셜 태깅의 활용방안을 제안하는 것을 목적으로 한다. 이를 위해 정보기술을 활용한 아카이브의 성과를 바탕으로 국내외 아카이브의 기술 적용 현황을 파악하고, 소셜 태깅이 적용된 국내외 디지털 아카이브의 사례연구를 통해 소셜 태킹의 활용 현황과 특성을 분석하였다. 이용자 참여 단계유형을 재구성하여 소셜 태깅을 통한 참여 단계 모델을 제시하고, 디지털 아카이브에서 이용자의 참여와 콘텐츠의 기여도를 중심으로 표현, 커뮤니케이션, 협업에 따른 소셜 태깅의 활용 방안을 제안하였다.

소셜 북마킹 시스템의 이용자 행위 패턴에 관한 연구 (A Study About User Pattern of Social Bookmarking System)

  • 조현;최준현;김성희
    • 인터넷정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.29-37
    • /
    • 2011
  • 최근 들어 웹의 진화가 급속하게 진전되면서 사용자가 직접 참여하는 유형의 서비스들이 활발하게 보급되었다. 사용자들은 네트워크 공간상에서 여러 종류의 콘텐츠를 공유하며 의견을 교환한다. 이러한 서비스의 대표적인 예로 소셜 북마킹 사이트를 들 수 있다. 사이트의 이용자들은 웹 사이트를 북마킹하는 과정에 있어서 타인의 북마킹 내역 및 태그 정보를 공유하며태그를 생산하게 되는데 이를 협업적 태깅이라고 한다. 본 연구에서는 최근 활발하게 이용되는 소셜 북마킹 및 협업적 태깅에 대한 실증적인 분석을 수행하였다. 분석 결과 분석 결과 전체 이용자 중에서 아주 소수만이 북마킹 활동을 활발하게 수행하며, 소수의 사이트와 태그가 다수의 사용자에 의해 이용되었다. 24%의 사용자가 총 80%에 해당하는 태깅을 수행하였으며, 75%의 사이트와 81%의 태그가 3번 이하로 태깅되었다. 사용자에 따라서 북마킹 활동에도 차이가 있었으며, 가장 이른 시점에 부여된 태그가 다수의 동의를 얻었다. 특정 사이트의 태그 구성 비율은 점차 수렴해감을 확인할 수 있었다. 본 연구결과가 향후 소셜 북마킹 시스템의 발전에 도움이 시사점을 제공한다고 기대한다.

멀티미디어 콘텐츠의 맞춤형 정보 제공 연구 (A Study for Personalized Multimedia Information Services)

  • 박지수;김무철;노승민
    • 한국전자거래학회지
    • /
    • 제20권3호
    • /
    • pp.79-87
    • /
    • 2015
  • 최근 웹 2.0의 도래와 더불어 멀티미디어 콘텐츠 제작 과정에서 사용자의 참여를 장려하기 시작했다. 이에 따라서 멀티미디어 콘텐츠 관련 연구들은 사용자 참여형 환경에 맞추어 맞춤형정보를 제공하는데 연구의 초점을 맞추기 시작했다. 이에 본 연구는 사용자의 요구사항과 개인별 맞춤정보를 제공하기 위한 방법론을 정리하고 분석함으로써 적용 방안을 사용자가 적극적으로 웹 콘텐츠 제작 과정에 참여하여 해당 콘텐츠의 카테고리 및 정의를 설정할 수 있는 환경을 마련하여 사용자의 선택의 폭을 확장하며, 콘텐츠 제작에 참여할 수 있는 환경을 마련해줄 수 있을 것으로 기대된다.

추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해 (Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy)

  • 김일주
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.99-123
    • /
    • 2018
  • 웹상에서의 기하급수적으로 증가하는 정보의 양으로 인해, 중요하고 가치 있는 데이터를 변별 해 내는 작업은 그 어느 때보다도 중요하다고 하겠다. 추천 시스템은 이러한 정보의 과 공급 문제를 해결하기 위한 가장 효과적인 방법 중 하나임에도 불구하고, 그 성능은 기존 방식들에서 크게 진전을 이루지 못하고 있는 것이 사실이다. 따라서 본 논문에서는 이 문제를 진전시키기 위해, 협업태그를 활용한 새로운 사용자 프로파일링 기법을 제안하고 사용자의 평가 및 태깅패턴을 분석, 그 활용 또한 모색한다. 본 논문에서 제안하는 기법의 검증을 위해, 해당 프로파일링 기법을 활용 한 혼합 영화 추천 시스템을 구현하고 실제 데이터를 사용하여 기존의 추천 방식 대비 그 경쟁력을 검증하였다. 그와 더불어, 민감도 분석을 통해 사용자의 태깅패턴과 평가패턴에 기반한 차별적인 추천 방식의 잠재적 가능성 또한 제안, 검증한다.

대량의 소셜 컨텐츠에서 의미 있는 정보의 필터링 연구 (A Study on Filtering for Meaningful Information in the Massive Social Contents)

  • 안득현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.553-554
    • /
    • 2010
  • 무수히 많은 정보가 쏟아져 나오는 시대에 살고 있는 웹 사용자에게 유용한 정보를 제공하기 위한 여과기법의 연구는 큰 중요성을 갖는다. 이런 기법엔 크게 내용 기반 여과방식과 협업적 여과방식 두 가지로 나눌 수 있다. 이들 각각은 서로 장, 단점을 가지고 있으며 따라서 이를 병합한 기법의 연구는 필수적이다. DB 의 WAL 기법과 진화알고리즘을 이용하여 좀 더 사용자에게 최적화된 추천을 가능하게 할 수 있다. 또한 폭소노미에 기반한 태깅기법 및 패턴인식, 온톨로지(ontology) 기법의 연구를 통해 기존의 한계를 보완하여 향후 더욱 개선된 여과 기법을 기대할 수 있다.

의미 있는 태그 클러스터 구축을 위한 설계 방안 (A Design of Building a Meaningful Tag Cluster)

  • 박병재;우종우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.658-661
    • /
    • 2008
  • 태깅은 웹 2.0의 핵심 기술 중 하나로, 매우 유연하고 역동적인 분류 체계를 제공한다. 하지만 유연성과 역동성의 확보에 의해 계층 구조나 연관 관계와 같은 태그의 관계성이 부족하거나 존재하지 않는 한계점을 가지고 있는 것 또한 사실이다. 이런 한계점을 보완하기 위한 방법으로 계층 관계를 형성하기 위한 계층 클러스터링 방법과, 연관 관계를 형성하기 위한 협업 필터링 방법이 존재한다. 이 두 가지 방법은 태그의 관계성을 제공하지만, 연관 관계와 계층 관계 중 하나만 제공한다는 단점을 가진다. 본 논문에서는 태그 검색 시 연관 관계뿐 아니라 계층 구조의 탐색을 제공해주기 위한 태그 클러스터링 알고리즘을 설계하였다. 제안한 알고리즘은 사용자 태그셋을 활용하여 태그의 유사성을 계산하는 방법을 제시하고, 기존의 시각화 방법(태그 구름)과 다른 새로운 형태로 시각화 할 수 있는 결과 데이터를 제공한다.

정보채집으로의 접근 - 폭소노미 이해를 위한 개념적 틀 연구 - (Information Forager's Approach to Folksonomy)

  • 박희진
    • 한국비블리아학회지
    • /
    • 제22권3호
    • /
    • pp.189-206
    • /
    • 2011
  • 본 연구는 정보채집(information foraging) 이론을 적용하여 웹 정보자원을 조직, 검색, 공유하는 폭소노미 이용자의 상호작용을 체계적으로 연구, 분석하는 개념적 틀을 제시하고자 한다. 폭소노미 상호작용 이해를 위한 개념적 틀은 최종 이용자의 세 가지 정보행위간의 유기적인 관계로 구성되어 있다: (1) 태그를 활용하여 웹 정보자원을 분류하고 조직하는 태깅; (2) 폭소노미 내에서 유용한 정보 자원을 발견하고 검색하는 정보탐험; (3) 폭소노미를 통해 유사한 관심을 갖고 있는 다른 이용자를 발견하고 커뮤니티를 구성하며, 협업을 통해 새로운 정보자원을 창출해내는 지식공유. 이 틀에서 최종이용자는 정보환경에 유연적으로 적응하며 폭소노미를 통해 줄곧 관심사에 관한 정보를 수집, 모니터하며 다른 이용자와의 효율적인 공유와 검색을 위해 끊임없이 탐험하는 정보채집자(information forager)로 이해된다. 본 연구에서 제시한 개념적 틀은 이용자와 폭소노미의 역동적이고 복잡한 상호작용 현상을 포괄적으로 조망함으로써, 향후 폭소노미를 비롯한 웹 정보서비스의 유용화 연구 설계에 보다 체계적인 이론적 토대를 제공할 수 있을 것이다.

사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템 (A Hybrid Music Recommendation System Combining Listening Habits and Tag Information)

  • 김현희;김동건;조진남
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.107-116
    • /
    • 2013
  • 본 연구에서는 소셜 음악 사이트에서 사용자들이 음악 아이템을 청취한 횟수와 생성한 태그 정보를 혼합하여 음악을 추천하는 시스템을 제안한다. 현재, 상용화된 음악 추천 시스템들은 주로 사용자의 청취 습관과 외부적인 선호도 입력값을 기반으로 음악을 추천하고 있다. 그러나 이 방식은 아직 음악을 청취한 사용자가 많지 않은 새로운 음악이나 청취 정보가 없는 새로운 사용자의 경우 추천하는 데 어려움이 있다. 이 문제를 해결하기 위해서 본 논문에서는 사용자가 선정한 키워드를 아이템에 부여하는 협업 태깅으로 생성된 태그 정보를 활용하였다. 태그의 의미를 파악하여 감정 표현의 정도에 따라 가중치를 부여한 뒤, 태그 점수와 청취 횟수를 혼합하여 음악 아이템의 선호도를 산출하였다. 이를 기반으로 사용자 프로파일을 생성하고 협업 필터링 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 청취 습관 기반 추천, 태그 점수 기반 추천, 하이브리드 추천 방법의 세 가지 추천 방법에 대해서 정확도, 재현율, 그리고 F-measure를 계산하였다. 실험 결과에 대해 통계적 검증을 시행한 결과, 하이브리드 추천 방법이 다른 두 가지 방식보다 통계적으로 유의한 차이를 보여 성능이 우수한 것으로 나타났다.

질의어의 근접성 정보 및 그래프 프로파일링 기법을 이용한 태그 기반 개인화 검색 (Exploiting Query Proximity and Graph Profiling Method for Tag-based Personalized Search in Folksonomy)

  • 한기준;장진철;이문용
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1117-1125
    • /
    • 2014
  • 최근 폭소노미라고 불리는 데이터들이 사용자의 의도 파악 및 흥미를 분석하는 데에 매우 유용하게 쓰이고 있다. 본 논문은 폭소노미 데이터를 이용한 개인화 검색에서, 기존의 벡터 기반 프로파일링 및 유사도 계산 모델의 한계점을 지적하고, 이러한 한계를 극복하기 위한 방법으로 그래프 기반의 프로파일링 및 유사도 계산법을 제안한다. 최종적으로 그래프 기반의 개인화 검색 모델에 추가적으로 질의어간의 근접성까지 고려한 보다 발전된 개인화 검색 기법을 제안하였다. 본 연구에서는 복수의 데이터셋을 사용한 객관적인 성능 평가 실험을 통해 제안한 모델이 기존의 벡터 스페이스 모델에 기반한 프로파일링 기법 및 프로파일 간의 유사도 계산 기법보다 더 뛰어난 개인화 검색 결과를 제공함을 확인하였다. 또한 추가적인 파라미터 실험을 통하여, 제안하는 모델은 어떠한 형태의 데이터셋에도 쉽게 적용가능함을 보였다.