• Title/Summary/Keyword: 협업태깅

Search Result 11, Processing Time 0.025 seconds

Collaborative Tag-based Filtering for Recommender Systems (효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법)

  • Yeon, Cheol;Ji, Ae-Ttie;Kim, Heung-Nam;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.157-177
    • /
    • 2008
  • Even in a single day, an enormous amount of content including digital videos, posts, photographs, and wikis are generated on the web. It's getting more difficult to recommend to a user what he/she prefers among these contents because of the difficulty of automatically grasping of content's meanings. CF (Collaborative Filtering) is one of useful methods to recommend proper content to a user under these situations because the filtering process is only based on historical information about whether or not a target user has preferred an item before. Collaborative Tagging is the process that allows many users to annotate content with descriptive tags. Recommendation using tags can partially improve, such as the limitations of CF, the sparsity and cold-start problem. In this research, a CF method with user-created tags is proposed. Collaborative tagging is employed to grasp and filter users' preferences for items. Empirical demonstrations using real dataset from del.icio.us show that our algorithm obtains improved performance, compared with existing works.

  • PDF

A Study on Social Tagging for Promoting Users' Participation in Digital Archives (디지털 아카이브의 이용자 참여의 활성화를 위한 소셜 태깅 활용 방안 연구)

  • Park, Heejin
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.3
    • /
    • pp.269-290
    • /
    • 2017
  • This study aims to present the framework for promoting active engagement of users in digital archives through social tagging. It analyzed the technological development involved with digital archives, and the user participation and engagement through social media. The analysis explored the aspects of social tagging in terms of communication, sharing and collaboration in digital archives. Based on the analysis and reviews, it developed the model of social tagging for user participation and interaction in digital archives. The study proposed the application of open and game platforms for promoting active engagement of users in digital archives through social tagging.

A Study About User Pattern of Social Bookmarking System (소셜 북마킹 시스템의 이용자 행위 패턴에 관한 연구)

  • Jo, Hyeon;Choeh, Joon-Yeon;Kim, Soung-Hie
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.29-37
    • /
    • 2011
  • Recently, many user-participating web services have been used widely as the evolution of internet web technology has rapidly been developed. Users share various content and opinion on line using a site like ‘Social bookmarking.’ Users can share others’ bookmarking history and create tags while bookmarking web sites; we call it collaborative tagging. In this paper, we studied empirical analysis for widely used social bookmarking and collaborative tagging which the result shows minority of users is actively using the bookmarking and a few sites and tags are used by majority of the users. 24% users tagged 80%, 75% sites and 81% tags were tagged below than 3 times. Types of bookmarking activities were found different by users and early appointed tags get more frequency by majority. We also identified relative proportions of tags on certain sites are becoming convergence gradually. We expect the result of this paper will give opportunities to help further developing social bookmarking system.

A Study for Personalized Multimedia Information Services (멀티미디어 콘텐츠의 맞춤형 정보 제공 연구)

  • Park, Jisoo;Kim, Mucheol;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.3
    • /
    • pp.79-87
    • /
    • 2015
  • With recent emergence of Web 2.0 technology, many services are encouraging the user participation. Then, many approaches dealing with multimedia contents focused on the personalized information provisioning. The proposed approach analyzes the user requirements and previous methodology for personalized information provisioning. Furthermore, we propose the user participation based multimedia services with collaborative tagging.

Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy (추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해)

  • Kim, Iljoo
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.99-123
    • /
    • 2018
  • Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.

A Study on Filtering for Meaningful Information in the Massive Social Contents (대량의 소셜 컨텐츠에서 의미 있는 정보의 필터링 연구)

  • Ahn, Deuk-Hyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.553-554
    • /
    • 2010
  • 무수히 많은 정보가 쏟아져 나오는 시대에 살고 있는 웹 사용자에게 유용한 정보를 제공하기 위한 여과기법의 연구는 큰 중요성을 갖는다. 이런 기법엔 크게 내용 기반 여과방식과 협업적 여과방식 두 가지로 나눌 수 있다. 이들 각각은 서로 장, 단점을 가지고 있으며 따라서 이를 병합한 기법의 연구는 필수적이다. DB 의 WAL 기법과 진화알고리즘을 이용하여 좀 더 사용자에게 최적화된 추천을 가능하게 할 수 있다. 또한 폭소노미에 기반한 태깅기법 및 패턴인식, 온톨로지(ontology) 기법의 연구를 통해 기존의 한계를 보완하여 향후 더욱 개선된 여과 기법을 기대할 수 있다.

A Design of Building a Meaningful Tag Cluster (의미 있는 태그 클러스터 구축을 위한 설계 방안)

  • Park, Byoung-Jae;Woo, Chong-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.658-661
    • /
    • 2008
  • 태깅은 웹 2.0의 핵심 기술 중 하나로, 매우 유연하고 역동적인 분류 체계를 제공한다. 하지만 유연성과 역동성의 확보에 의해 계층 구조나 연관 관계와 같은 태그의 관계성이 부족하거나 존재하지 않는 한계점을 가지고 있는 것 또한 사실이다. 이런 한계점을 보완하기 위한 방법으로 계층 관계를 형성하기 위한 계층 클러스터링 방법과, 연관 관계를 형성하기 위한 협업 필터링 방법이 존재한다. 이 두 가지 방법은 태그의 관계성을 제공하지만, 연관 관계와 계층 관계 중 하나만 제공한다는 단점을 가진다. 본 논문에서는 태그 검색 시 연관 관계뿐 아니라 계층 구조의 탐색을 제공해주기 위한 태그 클러스터링 알고리즘을 설계하였다. 제안한 알고리즘은 사용자 태그셋을 활용하여 태그의 유사성을 계산하는 방법을 제시하고, 기존의 시각화 방법(태그 구름)과 다른 새로운 형태로 시각화 할 수 있는 결과 데이터를 제공한다.

Information Forager's Approach to Folksonomy (정보채집으로의 접근 - 폭소노미 이해를 위한 개념적 틀 연구 -)

  • Park, Hee-Jin
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.3
    • /
    • pp.189-206
    • /
    • 2011
  • This paper proposes a conceptual framework to explore the ways in which people work with in accessing, sharing, and navigating Web resources. In order to provide a better frame of a user's interaction with a folksonomy, an information foraging approach was adapted that denotes adaptive information seeking behaviors of users within human information interaction. A conceptual framework that consists of three different components from users' points of view was proposed: tagging, navigation, and knowledge sharing. This understanding will help us to motivate possible future directions of research in folksonomy and lay the groundwork for empirical research which focuses on qualitative analysis of a folksonomic and users' tagging behaviors.

A Hybrid Music Recommendation System Combining Listening Habits and Tag Information (사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • In this paper, we propose a hybrid music recommendation system combining users' listening habits and tag information in a social music site. Most of commercial music recommendation systems recommend music items based on the number of plays and explicit ratings of a song. However, the approach has some difficulties in recommending new items with only a few ratings or recommending items to new users with little information. To resolve the problem, we use tag information which is generated by collaborative tagging. According to the meaning of tags, a weighted value is assigned as the score of a tag of an music item. By combining the score of tags and the number of plays, user profiles are created and collaborative filtering algorithm is executed. For performance evaluation, precision, recall, and F-measure are calculated using the listening habit-based recommendation, the tag score-based recommendation, and the hybrid recommendation, respectively. Our experiments show that the hybrid recommendation system outperforms the other two approaches.

Exploiting Query Proximity and Graph Profiling Method for Tag-based Personalized Search in Folksonomy (질의어의 근접성 정보 및 그래프 프로파일링 기법을 이용한 태그 기반 개인화 검색)

  • Han, Keejun;Jang, Jincheul;Yi, Mun Yong
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1117-1125
    • /
    • 2014
  • Folksonomy data, which is derived from social tagging systems, is a useful source for understanding a user's intention and interest. Using the folksonomy data, it is possible to create an accurate user profile which can be utilized to build a personalized search system. However there are limitations in some of the traditional methods such as Vector Space Model(VSM) for user profiling and similarity computation. This paper suggests a novel method with graph-based user and document profile which uses the proximity information of query terms to improve personalized search. We demonstrate the performance of the suggested method by comparing its performance with several state-of-the-art VSM based personalization models in two different folksonomy datasets. The results show that the proposed model constantly outperforms the other state-of-the-art personalization models. Furthermore, the parameter sensitivity results show that the proposed model is parameter-free in that it is not affected by the idiosyncratic nature of datasets.