Even in a single day, an enormous amount of content including digital videos, posts, photographs, and wikis are generated on the web. It's getting more difficult to recommend to a user what he/she prefers among these contents because of the difficulty of automatically grasping of content's meanings. CF (Collaborative Filtering) is one of useful methods to recommend proper content to a user under these situations because the filtering process is only based on historical information about whether or not a target user has preferred an item before. Collaborative Tagging is the process that allows many users to annotate content with descriptive tags. Recommendation using tags can partially improve, such as the limitations of CF, the sparsity and cold-start problem. In this research, a CF method with user-created tags is proposed. Collaborative tagging is employed to grasp and filter users' preferences for items. Empirical demonstrations using real dataset from del.icio.us show that our algorithm obtains improved performance, compared with existing works.
Journal of the Korean Society for information Management
/
v.34
no.3
/
pp.269-290
/
2017
This study aims to present the framework for promoting active engagement of users in digital archives through social tagging. It analyzed the technological development involved with digital archives, and the user participation and engagement through social media. The analysis explored the aspects of social tagging in terms of communication, sharing and collaboration in digital archives. Based on the analysis and reviews, it developed the model of social tagging for user participation and interaction in digital archives. The study proposed the application of open and game platforms for promoting active engagement of users in digital archives through social tagging.
Recently, many user-participating web services have been used widely as the evolution of internet web technology has rapidly been developed. Users share various content and opinion on line using a site like ‘Social bookmarking.’ Users can share others’ bookmarking history and create tags while bookmarking web sites; we call it collaborative tagging. In this paper, we studied empirical analysis for widely used social bookmarking and collaborative tagging which the result shows minority of users is actively using the bookmarking and a few sites and tags are used by majority of the users. 24% users tagged 80%, 75% sites and 81% tags were tagged below than 3 times. Types of bookmarking activities were found different by users and early appointed tags get more frequency by majority. We also identified relative proportions of tags on certain sites are becoming convergence gradually. We expect the result of this paper will give opportunities to help further developing social bookmarking system.
With recent emergence of Web 2.0 technology, many services are encouraging the user participation. Then, many approaches dealing with multimedia contents focused on the personalized information provisioning. The proposed approach analyzes the user requirements and previous methodology for personalized information provisioning. Furthermore, we propose the user participation based multimedia services with collaborative tagging.
Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.553-554
/
2010
무수히 많은 정보가 쏟아져 나오는 시대에 살고 있는 웹 사용자에게 유용한 정보를 제공하기 위한 여과기법의 연구는 큰 중요성을 갖는다. 이런 기법엔 크게 내용 기반 여과방식과 협업적 여과방식 두 가지로 나눌 수 있다. 이들 각각은 서로 장, 단점을 가지고 있으며 따라서 이를 병합한 기법의 연구는 필수적이다. DB 의 WAL 기법과 진화알고리즘을 이용하여 좀 더 사용자에게 최적화된 추천을 가능하게 할 수 있다. 또한 폭소노미에 기반한 태깅기법 및 패턴인식, 온톨로지(ontology) 기법의 연구를 통해 기존의 한계를 보완하여 향후 더욱 개선된 여과 기법을 기대할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.658-661
/
2008
태깅은 웹 2.0의 핵심 기술 중 하나로, 매우 유연하고 역동적인 분류 체계를 제공한다. 하지만 유연성과 역동성의 확보에 의해 계층 구조나 연관 관계와 같은 태그의 관계성이 부족하거나 존재하지 않는 한계점을 가지고 있는 것 또한 사실이다. 이런 한계점을 보완하기 위한 방법으로 계층 관계를 형성하기 위한 계층 클러스터링 방법과, 연관 관계를 형성하기 위한 협업 필터링 방법이 존재한다. 이 두 가지 방법은 태그의 관계성을 제공하지만, 연관 관계와 계층 관계 중 하나만 제공한다는 단점을 가진다. 본 논문에서는 태그 검색 시 연관 관계뿐 아니라 계층 구조의 탐색을 제공해주기 위한 태그 클러스터링 알고리즘을 설계하였다. 제안한 알고리즘은 사용자 태그셋을 활용하여 태그의 유사성을 계산하는 방법을 제시하고, 기존의 시각화 방법(태그 구름)과 다른 새로운 형태로 시각화 할 수 있는 결과 데이터를 제공한다.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.3
/
pp.189-206
/
2011
This paper proposes a conceptual framework to explore the ways in which people work with in accessing, sharing, and navigating Web resources. In order to provide a better frame of a user's interaction with a folksonomy, an information foraging approach was adapted that denotes adaptive information seeking behaviors of users within human information interaction. A conceptual framework that consists of three different components from users' points of view was proposed: tagging, navigation, and knowledge sharing. This understanding will help us to motivate possible future directions of research in folksonomy and lay the groundwork for empirical research which focuses on qualitative analysis of a folksonomic and users' tagging behaviors.
Journal of the Korea Society of Computer and Information
/
v.18
no.2
/
pp.107-116
/
2013
In this paper, we propose a hybrid music recommendation system combining users' listening habits and tag information in a social music site. Most of commercial music recommendation systems recommend music items based on the number of plays and explicit ratings of a song. However, the approach has some difficulties in recommending new items with only a few ratings or recommending items to new users with little information. To resolve the problem, we use tag information which is generated by collaborative tagging. According to the meaning of tags, a weighted value is assigned as the score of a tag of an music item. By combining the score of tags and the number of plays, user profiles are created and collaborative filtering algorithm is executed. For performance evaluation, precision, recall, and F-measure are calculated using the listening habit-based recommendation, the tag score-based recommendation, and the hybrid recommendation, respectively. Our experiments show that the hybrid recommendation system outperforms the other two approaches.
Folksonomy data, which is derived from social tagging systems, is a useful source for understanding a user's intention and interest. Using the folksonomy data, it is possible to create an accurate user profile which can be utilized to build a personalized search system. However there are limitations in some of the traditional methods such as Vector Space Model(VSM) for user profiling and similarity computation. This paper suggests a novel method with graph-based user and document profile which uses the proximity information of query terms to improve personalized search. We demonstrate the performance of the suggested method by comparing its performance with several state-of-the-art VSM based personalization models in two different folksonomy datasets. The results show that the proposed model constantly outperforms the other state-of-the-art personalization models. Furthermore, the parameter sensitivity results show that the proposed model is parameter-free in that it is not affected by the idiosyncratic nature of datasets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.