• Title/Summary/Keyword: 협업태그

Search Result 27, Processing Time 0.021 seconds

Collaborative Tag-Based Recommendation Methods Using the Principle of Latent Factor Models (잠재 요인 모델의 원리를 이용한 협업 태그 기반 추천 방법)

  • Kim, Hyoung-Do
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.47-57
    • /
    • 2009
  • Collaborative tagging systems allow users to attach tags to diverse sharable contents in social networks. These tags provide usefulness in reusing the contents for all community members as well as their creators. Three-dimensional data composed of users, items, and tags are used in the collaborative tag-based recommendation. They are generally more voluminous and sparse than two-dimensional data composed of users and items. Therefore, there are many difficulties in applying existing collaborative filtering methods directly to them. Latent factor models, which are also successful in the area of collaborative filtering recently, discover latent features(factors) for explaining observed values and solve problems based on the features. However, establishing the models require much time and efforts. In order to apply the latent factor models to three-dimensional collaborative filtering data, we have to overcome the difficulty of establishing them. This paper proposes various methods for determining preferences of users to items via establishing an intuitive model by assuming tags used for items as latent factors to users and items respectively. They are compared using real data for concluding desirable directions.

  • PDF

An cooperative tag recognition algorithm in RFID systems using multi-readers (RFID 시스템에서 리더기들간의 협업을 이용한 태그 인식 알고리즘)

  • Jin, Hong-Hua;Park, Sook-Young;Lee, Sang-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.789-792
    • /
    • 2007
  • 본 논문에서는 단일리더기가 아닌 멀티리더기를 이용하여 리더기들간의 상호 협동작업을 통하여 일정한 속도로 이동하는 태그를 최대한 많이 읽을 수 있는 멀티리더기들간의 협업을 이용한 향상된 태그인식 알고리즘을 제안하였다. 즉, 두 개의 리더기를 사용하여 많은 양의 태그가 서로 다른 이동 속도로 리더기를 지나 갈 때, 첫 번째 리더기가 저장해 놓은 태그정보를 두 번째 리더기가 이어받아 계속하여 나머지 태그를 인식하는 알고리즘을 개발한다. 시뮬레이션 결과 멀티리더기를 이용하면 단일리더기의 단점을 극복하여 보다 향상된 태그 인식 결과를 얻어내어 좀 더 안정적이고 효율적인 알고리즘을 제안하였다.

Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy (추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해)

  • Kim, Iljoo
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.99-123
    • /
    • 2018
  • Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.

Tag-Based Collaborative Filtering Approach Using Analysis of the Correlation Between User's Preference and Tags (사용자 선호도와 태그 간 상관도 분석을 통한 태그 기반 협력적 필터링 기법)

  • Lee, Gyeong-Jong;Gong, Gi-Hyun;Lee, Sang-Gu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.72-77
    • /
    • 2007
  • 웹의 성장에 따른 기하급수적인 정보의 축적으로 인한 정보과다(Information Overload) 현상의 심화를 해결하기 위해 이루어져 온 많은 연구 중 하나인 추천 시스템은 사용자에게 고수준의 편의성을 제공하기 위한 시스템으로써 발전해 왔다. 그러나 과거에 고도로 집중화되어 관리, 구축되어 오던 정보와는 달리 Web2.0라는 새로운 웹 환경의 도래와 함께 태그, 블로그 등 새로운 형태와 특성을 가지는 점보들이 등장하게 되었다. 웹의 컨텐츠에 대한 메타정보를 사용자가 직접 입력한 Web2.0 기반의 태그 데이터론 활용해서 추천 시스템의 성능을 향상시킬 수 있는 기법을 연구하였다. 추천 기법 중 가장 대표적이고 기초적인 협업 필터링 기법에 태그를 활용하며 태그에 사용자에 대한 중요도를 감안한 가중치 부여 기법에 연구한다. 유사한 성향을 가진 사용자를 식별하는데 있어 태그 집합간의 유사도를 비교하는 방법을 사용하며 사용자의 성향을 반영하기 위해서 태그와 사용자의 선호도 정수와의 연관성을 분석해서 이를 태그의 가중치로 환산하는 기법을 제안한다.

  • PDF

A Design of Building a Meaningful Tag Cluster (의미 있는 태그 클러스터 구축을 위한 설계 방안)

  • Park, Byoung-Jae;Woo, Chong-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.658-661
    • /
    • 2008
  • 태깅은 웹 2.0의 핵심 기술 중 하나로, 매우 유연하고 역동적인 분류 체계를 제공한다. 하지만 유연성과 역동성의 확보에 의해 계층 구조나 연관 관계와 같은 태그의 관계성이 부족하거나 존재하지 않는 한계점을 가지고 있는 것 또한 사실이다. 이런 한계점을 보완하기 위한 방법으로 계층 관계를 형성하기 위한 계층 클러스터링 방법과, 연관 관계를 형성하기 위한 협업 필터링 방법이 존재한다. 이 두 가지 방법은 태그의 관계성을 제공하지만, 연관 관계와 계층 관계 중 하나만 제공한다는 단점을 가진다. 본 논문에서는 태그 검색 시 연관 관계뿐 아니라 계층 구조의 탐색을 제공해주기 위한 태그 클러스터링 알고리즘을 설계하였다. 제안한 알고리즘은 사용자 태그셋을 활용하여 태그의 유사성을 계산하는 방법을 제시하고, 기존의 시각화 방법(태그 구름)과 다른 새로운 형태로 시각화 할 수 있는 결과 데이터를 제공한다.

A Study About User Pattern of Social Bookmarking System (소셜 북마킹 시스템의 이용자 행위 패턴에 관한 연구)

  • Jo, Hyeon;Choeh, Joon-Yeon;Kim, Soung-Hie
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.29-37
    • /
    • 2011
  • Recently, many user-participating web services have been used widely as the evolution of internet web technology has rapidly been developed. Users share various content and opinion on line using a site like ‘Social bookmarking.’ Users can share others’ bookmarking history and create tags while bookmarking web sites; we call it collaborative tagging. In this paper, we studied empirical analysis for widely used social bookmarking and collaborative tagging which the result shows minority of users is actively using the bookmarking and a few sites and tags are used by majority of the users. 24% users tagged 80%, 75% sites and 81% tags were tagged below than 3 times. Types of bookmarking activities were found different by users and early appointed tags get more frequency by majority. We also identified relative proportions of tags on certain sites are becoming convergence gradually. We expect the result of this paper will give opportunities to help further developing social bookmarking system.

A Hybrid Music Recommendation System Combining Listening Habits and Tag Information (사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • In this paper, we propose a hybrid music recommendation system combining users' listening habits and tag information in a social music site. Most of commercial music recommendation systems recommend music items based on the number of plays and explicit ratings of a song. However, the approach has some difficulties in recommending new items with only a few ratings or recommending items to new users with little information. To resolve the problem, we use tag information which is generated by collaborative tagging. According to the meaning of tags, a weighted value is assigned as the score of a tag of an music item. By combining the score of tags and the number of plays, user profiles are created and collaborative filtering algorithm is executed. For performance evaluation, precision, recall, and F-measure are calculated using the listening habit-based recommendation, the tag score-based recommendation, and the hybrid recommendation, respectively. Our experiments show that the hybrid recommendation system outperforms the other two approaches.

An Intelligent Collaborative Recommendation System using User's Tags (사용자 태그를 이용한 지능형 협업 추천 시스템)

  • Jung, Yujung;Kim, Jihyun;Kim, Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.785-786
    • /
    • 2009
  • 인터넷의 수많은 정보 속에서 사용자가 원하는 적절한 정보를 찾아 주기 위해 추천 시스템이 등장하였다. 기존의 추천 시스템들은 유사한 선호도를 갖는 사람들을 그룹화 하여 그들이 선호할 만한 아이템을 추천해 주는 방법을 사용하는데, 본 논문에서는 기존의 추천 시스템에 태그를 이용하여 추천의 신뢰도를 높이고자 한다. 사용자가 해당 아이템을 보고난 후 추가로 더 알고 싶은 내용에 대한 태그를 등록하면 그 태그는 다른 사용자들을 위한 추천 정보로 이용된다. 또한 추천 자료에 대한 사용자의 만족도 평가를 바탕으로 자료간의 연관 관계를 재조정하여 추천 시스템의 성능을 높인다.

Collaborative Tag-based Filtering for Recommender Systems (효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법)

  • Yeon, Cheol;Ji, Ae-Ttie;Kim, Heung-Nam;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.157-177
    • /
    • 2008
  • Even in a single day, an enormous amount of content including digital videos, posts, photographs, and wikis are generated on the web. It's getting more difficult to recommend to a user what he/she prefers among these contents because of the difficulty of automatically grasping of content's meanings. CF (Collaborative Filtering) is one of useful methods to recommend proper content to a user under these situations because the filtering process is only based on historical information about whether or not a target user has preferred an item before. Collaborative Tagging is the process that allows many users to annotate content with descriptive tags. Recommendation using tags can partially improve, such as the limitations of CF, the sparsity and cold-start problem. In this research, a CF method with user-created tags is proposed. Collaborative tagging is employed to grasp and filter users' preferences for items. Empirical demonstrations using real dataset from del.icio.us show that our algorithm obtains improved performance, compared with existing works.

  • PDF

A recommendation algorithm which reflects tag and time information of social network (소셜 네트워크의 태그와 시간 정보를 반영한 추천 알고리즘)

  • Jo, Hyeon;Hong, Jong-Hyun;Choeh, Joon Yeon;Kim, Soung Hie
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • In recent years, the number of social network system has grown rapidly. Among them, social bookmarking system(SBS) is one of the most popular systems. SBS provides network platform which users can share and manage various types of online resources by using tags. In SBS, it can be possible to reflect tag and time in order to enhance the quality of personalized recommendation. In this paper, we proposed recommender system which reflect tag and time at weight generation and similarity calculation. Also we adapted proposed method to real dataset and the result of experiment showed that the our method offers better performance when such information is integrated.